K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

Lời giải:

Ta có:

\(M=4x-x^2-5=-1-(x^2-4x+4)=-1-(x-2)^2\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $M=-1-(x-2)^2\leq -1$

Vậy GTLN của $M$ là $-1$ khi $(x-2)^2=0\Leftrightarrow x=2$

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

25 tháng 9 2023

\(C=-\left(x^2+4x+4\right)-\left(y^2-8y+16\right)+22\\ =-\left(x^2+2x.2+2^2\right)-\left(y^2-2.y.4+4^2\right)+22\\ =-\left(x+2\right)^2-\left(y-4\right)^2+22\\ Vậy:max_C=22.khi.x=-2.và.y=4\)

5 tháng 11 2021

\(P=-\left(x^2-4x+4\right)-\left(y^2+4y+4\right)+10\)

\(=-\left(x-2\right)^2-\left(y+2\right)^2+10\le10\)

\(minP=10\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

4 tháng 11 2019

a. \(4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Vậy GTLN của A = 7 khi x = 2

b. \(x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Vậy GTLN của B = \(\frac{1}{4}\) khi x = \(\frac{1}{2}\)

14 tháng 11 2018

M = 4x2 + 4x + 5 

M = (4x2 + 4x + 1) + 4

M = (2x + 1)2 + 4

Vì (2x + 1)2 ≥ 0

=> (2x + 1)2 + 4 ≥ 4 <=> M ≥ 4

=> GTNN của M bằng 4

Dấu "=" xảy ra khi\(\left(2x+1\right)^2=0\Leftrightarrow x=\frac{-1}{2}\)

Vậy GTNN của M bằng 4

14 tháng 11 2018

À thôi không cần giải nữa mình ra kết quả rồi

28 tháng 7 2019

\(M=4x-x^2-5\)

\(-M=x^2-4x+5\)

\(-M=x^2-2\cdot2\cdot x+2^2+1\)

\(-M=\left(x-2\right)^2+1\)

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\)

\(\Rightarrow-M\ge1\)

\(\Rightarrow M\le1\)

dấu "=" xảy ra khi : 

\(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\) 

17 tháng 10 2023

G = -x² + 4x - 5

= -(x² - 4x + 5)

= -(x² - 4x + 4 + 1)

= -(x - 2)² - 1

Do (x - 2)² ≥ 0 với mọi x ∈ R

⇒ -(x - 2)² ≤ 0 với mọi x ∈ R

⇒ -(x - 2)² - 1 ≤ -1 với mọi x ∈ R

Vậy GTLN của G là -1 khi x = 2

17 tháng 10 2023

\(G=-x^2+4x-5\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1\)

Vì \(-\left(x-2\right)^2\le0\forall x\)

=> \(G\le-1\forall x\)

\(MaxG=-1\Leftrightarrow x=2\)

2 tháng 7 2017

5-4x2+4x=5-(4x2-4x+1)+1

=6-(2x-1)2<(=)6

dấu bằng xảy ra khi x=1/2

2 tháng 7 2017

Ta có : 5 - 4x2 + 4x 

= 6 - 1 - 4x2 + 4x

= 6 - (4x2 - 4x + 1)

= 6 - (2x - 1)2

Mà (2x - 1)\(\ge0\forall x\)

Nên 6 - (2x - 1)\(\le6\forall x\)

Vậy GTLN cuả biểu thức là : 6 khi và chỉ khi x = \(\frac{1}{2}\)