: Cho tam giác ABC Xác định điểm K sao cho veto ka + 3 vecto kb - 2 vecto kc = vecto 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\)⇒ O là trọng tâm tam giác ABC
\(\overrightarrow{K\text{A}}+2\overrightarrow{KB}=\overrightarrow{CB}=\overrightarrow{0}\Rightarrow\overrightarrow{K\text{A}}+\overrightarrow{KB}+\overrightarrow{KB}+\overrightarrow{BC}=\overrightarrow{0}\Rightarrow\overrightarrow{K\text{A}}+\overrightarrow{KB}+\overrightarrow{KC}=\overrightarrow{0}\)
⇒ K là trọng tâm tam giác ABC
Câu cuối chịu :))
a/ \(2\overrightarrow{JA}+\overrightarrow{JC}-\overrightarrow{JB}=\overrightarrow{CJ}+\overrightarrow{JA}\)
\(\Leftrightarrow\overrightarrow{JA}+\overrightarrow{BJ}=2\overrightarrow{CJ}\)
\(\Leftrightarrow\overrightarrow{BA}=2\overrightarrow{CJ}\)
Vậy vẽ điểm I thế này: Vì 2 vecto bằng nhau nên cùng phương=> vẽ CJ//BA sao cho CJ= AB/2
b/ \(\overrightarrow{KA}+\overrightarrow{KB}+\overrightarrow{KC}=2\overrightarrow{BK}+2\overrightarrow{KC}\)
\(\Leftrightarrow\overrightarrow{KA}+\overrightarrow{CK}=3\overrightarrow{BK}\)
\(\Leftrightarrow\overrightarrow{CA}=3\overrightarrow{BK}\)
Vì 2 vecto cùng phương=> Vẽ BK//CA sao cho AC=3BK
Ta thấy \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}=\overrightarrow{CM}\)
Như vậy, điểm M chính là đỉnh thứ tư của hình bình hành ABCM.