Cho tam giác ABC.Trên AB lấy M sao cho AM=MB.Trên AC lấy N sao cho AN=2 lần NC.Đường thẳng MN cắt BC kéo dài tại D.
a/ So sánh diện tích tam giác AMN và BMN
b/ So sánh diện tích tam giác AMN và tứ giác BMNC
c/ Hãy chứng tỏ rằng BC=CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối A với D; B với N
+) Xét tam giác NMA và NBM có chung chiều ao hạ từ N xuống AB; AM = BM
=> S(NMA) = S(NBM)
=> chiều cao hạ từ A xuống MN = Chiều cao hạ từ B xuống MN ( vì chung đáy MN)
=> S(AND) = S(BND) ( Vì chung đáy ND)
+) Xét tam giác DCN và DAN có chung chiều cao hạ từ D xuống AC; đáy CN = 1/2 đáy AN
=> S DCN = 1/2 S DAN
=> S(DCN) =1/2 S(BND) => S(DCN) = S(BCN) => đáy BC = CD ( vì chung chiều cao hạ từ N xuống BC)
a)\(\Delta AMN,\Delta BMN\)có chung đường cao hạ từ N,có đáy AM = BM nên SAMN = SBMN
b) AC = AN + NC = AN +\(\frac{1}{2}AN=\frac{3}{2}AN\)nên\(\Delta ABC,\Delta ABN\)có chung đường cao hạ từ B ; đáy AC = 3/2 AN
\(\Rightarrow S_{ABC}=\frac{3}{2}S_{ABN}=\frac{3}{2}\left(S_{AMN}+S_{BMN}\right)=\frac{3}{2}\times2S_{AMN}=3S_{AMN}\)
\(\Rightarrow S_{MNCB}=S_{ABC}-S_{AMN}=3S_{AMN}-S_{AMN}=2S_{AMN}\Rightarrow S_{AMN}=\frac{1}{2}S_{MNCB}\)
c)\(\Delta AMD,\Delta BMD\)có chung đường cao hạ từ D ; đáy AM = MB nên SAMD = SBMD mà SAMN = SBMN
=> SAMD - SAMN = SBMD - SBMN => SAND = SBND mà \(\Delta NCD,\Delta AND\)có chung đường cao hạ từ D ; đáy NC = 1/2 AN
=> SNCD = 1/2 SAND = 1/2 SBND mà\(\Delta NCD,\Delta BND\)có chung đường cao hạ từ N nên có đáy CD = 1/2 BD
=> BC = CD