( \(\sqrt{28}\)- \(\sqrt{122}\)- \(\sqrt{7}\)) \(\sqrt{7}\)+ 2\(\sqrt{21}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, (sqrt 28 - sqrt 12 - sqrt 7) sqrt 7 + 2 sqrt 21`.
`= sqrt(28.7) - sqrt(12.7) - sqrt(7.7) + 2 sqrt 21`.
`= sqrt(4. 7.7) - sqrt (12.7) - 7 + 2 sqrt 21`.
`= 14 - sqrt(4.3.7) - 7 + 2 sqrt 21`.
`= 7`.
`b, (sqrt99-sqrt18-sqrt11)sqrt11+3sqrt22`
`= sqrt(99.11)- sqrt(18.11)-sqrt(11.11) +3sqrt22`
`= sqrt(9.11.11)-sqrt(2.9.11)-11+3sqrt22`
`= 33 - 11 = 22`.
\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
= \(14-2\sqrt{21}-7+2\sqrt{21}\) = \(7\)
\(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{21}\)
= \(33-3\sqrt{22}-11+3\sqrt{21}\) = \(22-3\sqrt{22}+3\sqrt{21}\)
Mình sẽ làm cụ thể một tí nhé:
a) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=\left(2\sqrt{7}-2\sqrt{3}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=\left(\sqrt{7}-2\sqrt{3}\right)\sqrt{7}+2\sqrt{21}\)
\(=7-2\sqrt{21}+2\sqrt{21}\)
\(=7\)
b) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{21}\)
\(=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{21}\)
\(=\left(2\sqrt{11}-3\sqrt{2}\right)\sqrt{11}+3\sqrt{21}\)
\(=22-3\sqrt{22}+3\sqrt{21}\)
\(\text{a)}\)\(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
\(\Leftrightarrow5\sqrt{10}+10-\sqrt{250}\)
\(\Leftrightarrow5\sqrt{10}+10-5\sqrt{10}\)
\(\Leftrightarrow10\)
\(\text{b)}\)\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(\Leftrightarrow4\sqrt{21}-2\sqrt{21}-7+2\sqrt{21}\)
\(\Leftrightarrow4\sqrt{21}-7\)
\(\sqrt{112}-7\sqrt{\dfrac{1}{7}}-14\sqrt{\dfrac{1}{28}}-\dfrac{21}{\sqrt{7}}\)
Các bạn giúp mình với
\(\sqrt{112}-7\sqrt{\dfrac{1}{7}}-14\sqrt{\dfrac{1}{28}}-\dfrac{21}{\sqrt{7}}=\sqrt{16.7}-\sqrt{49.\dfrac{1}{7}}-2.\sqrt{\dfrac{1}{4}.49.\dfrac{1}{7}}-\dfrac{3.7}{\sqrt{7}}\)
\(=4\sqrt{7}-\sqrt{7}-2.\dfrac{1}{2}\sqrt{7}-3\sqrt{7}=4\sqrt{7}-\sqrt{7}-\sqrt{7}-3\sqrt{7}=-\sqrt{7}\)
\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{9}+2\sqrt{21}\)
=\(\left(\sqrt{4}\sqrt{7}-\sqrt{7}-\sqrt{12}\right).3+2\sqrt{21}\)
=\(\left(2\sqrt{7}-\sqrt{7}-\sqrt{4}\sqrt{3}\right).3+2\sqrt{21}\)
=\(\left(\sqrt{7}-2\sqrt{3}\right).3+2\sqrt{21}\)
=\(3\sqrt{7}-6\sqrt{3}+2\sqrt{21}\)
đề có sai ko nhưng kết quả ra thế
\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{9}+2\sqrt{21}=\left(2\sqrt{7}-2\sqrt{3}-\sqrt{7}\right).3+2\sqrt{21}=\left(\sqrt{7}-2\sqrt{3}\right).3+2\sqrt{21}=3\sqrt{7}-6\sqrt{3}+2\sqrt{21}\)
\(\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{4.7}-\sqrt{9.7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=2\sqrt{7}-3\sqrt{7}+\left(\sqrt{7}+1\right)-\left(\sqrt{7}+1\right)=-\sqrt{7}\)