Cho 1^3 +2^3+3^3+...+9^3=2025
Tính M=2^3+4^3+6^3+...+18^3+
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =72/90+65/90=137/90
2: =24/56-77/56=-53/56
3: =-7/10+4/5=1/10
4: =15/100-4/100=11/100
5: =4/6-5/6=-1/6
6: =10/40-15/40-76/40=-81/40
7: =-9/10+7/18
=-81/90+35/90=-46/90=-23/45
8: =27/90-55/90=-28/90=-14/45
9: =36/60-50/60-35/60=-49/60
10: =-4/9+5/6-3/8
=-32/72+60/72-27/72
=1/72
Muốn cho số có hai chữ số giống nhau và chia hết cho 2 thì số đó phải là một trong các số 22, 44, 66, 88. Bây giờ ta tìm trong những số này số mà chia cho 5 thì dư 3.
Đó là số 88.
Xem thêm tại: http://loigiaihay.com/bai-99-trang-39-sgk-toan-6-tap-1-c41a3896.html#ixzz4xczZ4dOb
ta có : 1^3+2^3+...+9^3=2025
=> 2.(1^3+4^3+6^3+.....+18^3)=2025.2
=> 2^3+4^3+...+18^3 =4050
Vậy 2^3+4^3+...+18^3=4050
Ta có : 2^3 + 4^3 + 6^3 + ... + 18 ^3
= ( 1.2 )^3 + ( 2.2 ) ^3 + ( 2 .3 ) ^3 + .... + ( 2 .9 ) ^3
= 1^3 . 2^3 + 2^3 . 2^3 + 2^3 . 3^3 + ... + 2^3 . 9^3
= 2^3 . ( 1^3 + 2^3 + 3^3 + ... + 9^3 )
= 8 . 2025 ( vì 1^3 + 2^3 + 3^3 + ... + 9^3 = 2025)
= 16200
a: \(\left(-\dfrac{5}{6}+\dfrac{2}{5}\right):\dfrac{3}{8}+\left(\dfrac{4}{5}-\dfrac{11}{30}\right):\dfrac{3}{8}\)
\(=\left(-\dfrac{5}{6}+\dfrac{2}{5}\right)\cdot\dfrac{8}{3}+\left(\dfrac{4}{5}-\dfrac{11}{30}\right)\cdot\dfrac{8}{3}\)
\(=\dfrac{8}{3}\left(-\dfrac{5}{6}+\dfrac{2}{5}+\dfrac{4}{5}-\dfrac{11}{30}\right)\)
\(=\dfrac{8}{3}\cdot\dfrac{-25+36-11}{30}\)
=0
b: \(\left(-\dfrac{3}{4}+\dfrac{2}{5}\right):\dfrac{3}{7}+\left(\dfrac{3}{5}+\dfrac{-1}{4}\right):\dfrac{3}{7}\)
\(=\left(-\dfrac{3}{4}+\dfrac{2}{5}\right)\cdot\dfrac{7}{3}+\left(\dfrac{3}{5}-\dfrac{1}{4}\right)\cdot\dfrac{7}{3}\)
\(=\dfrac{7}{3}\left(-\dfrac{3}{4}+\dfrac{2}{5}+\dfrac{3}{5}-\dfrac{1}{4}\right)\)
\(=\dfrac{7}{3}\cdot0=0\)
c: \(\dfrac{-13}{18}\cdot\dfrac{5}{8}+\dfrac{-5}{18}\cdot\dfrac{2}{9}+\dfrac{-13}{18}\cdot\dfrac{3}{8}+\dfrac{-5}{18}\cdot\dfrac{7}{9}\)
\(=\left(-\dfrac{13}{18}\cdot\dfrac{5}{8}+\dfrac{-13}{18}\cdot\dfrac{3}{8}\right)+\left(-\dfrac{5}{18}\cdot\dfrac{2}{9}+\dfrac{-5}{18}\cdot\dfrac{7}{9}\right)\)
\(=-\dfrac{13}{18}\left(\dfrac{5}{8}+\dfrac{3}{8}\right)+\dfrac{-5}{18}\left(\dfrac{2}{9}+\dfrac{7}{9}\right)\)
\(=-\dfrac{13}{18}-\dfrac{5}{18}=-\dfrac{18}{18}=-1\)
d: Sửa đề: \(\dfrac{-11}{19}\cdot\dfrac{4}{9}+\dfrac{-8}{19}\cdot\dfrac{3}{7}+\dfrac{-11}{19}\cdot\dfrac{5}{9}+\dfrac{-8}{19}\cdot\dfrac{4}{7}\)
\(=\left(-\dfrac{11}{19}\cdot\dfrac{4}{9}+\dfrac{-11}{19}\cdot\dfrac{5}{9}\right)+\left(\dfrac{-8}{19}\cdot\dfrac{3}{7}+\dfrac{-8}{19}\cdot\dfrac{4}{7}\right)\)
\(=-\dfrac{11}{19}\left(\dfrac{4}{9}+\dfrac{5}{9}\right)+\dfrac{-8}{19}\left(\dfrac{3}{7}+\dfrac{4}{7}\right)\)
\(=-\dfrac{11}{19}-\dfrac{8}{19}=-\dfrac{19}{19}=-1\)
\(a.\left(-\dfrac{5}{6}+\dfrac{2}{5}\right):\dfrac{3}{8}+\left(\dfrac{4}{5}-\dfrac{11}{30}\right):\dfrac{3}{8}\)
\(=\left(-\dfrac{13}{30}\right):\dfrac{3}{8}+\dfrac{13}{30}:\dfrac{3}{8}\)
\(=\left[\left(-\dfrac{13}{30}+\dfrac{13}{30}\right)\right]:\dfrac{3}{8}\)
\(=0:\dfrac{3}{8}=0\)
\(b.\left(-\dfrac{3}{4}+\dfrac{2}{5}\right):\dfrac{3}{7}+\left(\dfrac{3}{5}+-\dfrac{1}{4}\right):\dfrac{3}{7}\)
\(=\left(-\dfrac{7}{20}\right):\dfrac{3}{7}+\dfrac{7}{20}:\dfrac{3}{7}\)
\(=\left[\left(-\dfrac{7}{20}+\dfrac{7}{20}\right)\right]:\dfrac{3}{7}=0:\dfrac{3}{7}=0\)
\(c.-\dfrac{13}{18}.\dfrac{5}{8}+-\dfrac{5}{18}.\dfrac{2}{9}+-\dfrac{13}{18}.\dfrac{3}{8}+-\dfrac{5}{18}.\dfrac{7}{9}\)
\(=\left(\dfrac{5}{8}+\dfrac{3}{8}\right).-\dfrac{13}{18}+\left(\dfrac{2}{9}+\dfrac{7}{9}\right).-\dfrac{5}{18}\)
\(=1.-\dfrac{13}{18}+1.-\dfrac{5}{18}=-\dfrac{13}{18}+-\dfrac{5}{18}=-1\)
\(d.-\dfrac{11}{19}.\dfrac{4}{9}+\dfrac{-8}{19}.\dfrac{3}{7}+-\dfrac{11}{19}.\dfrac{5}{9}+-\dfrac{9}{19}.\dfrac{4}{7}\)
\(=\left(\dfrac{4}{9}+\dfrac{5}{9}\right).-\dfrac{11}{19}+-\dfrac{24}{133}+-\dfrac{36}{133}\)
\(=-\dfrac{11}{19}+-\dfrac{60}{133}=-\dfrac{137}{133}\)
\(2^3+4^3+6^3+...+18^3\)
\(=\left(1.2\right)^3+\left(2.2\right)^3+\left(2.3\right)^3+...+\left(2.9\right)^3\)
\(=1^3.2^3+2^3.2^3+2^3.3^3+...+2^3.9^3\)
\(=2^3\left(1^3+2^3+3^3+...+9^3\right)\)
\(=8.2025\) ( vì \(1^3+2^3+3^3+...+9^3=2025\) )
\(=16200\)