K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

Đây là toán lớp 9 mà bạn?

25 tháng 7 2019

Áp dụng bđt cosi ta có

\(\frac{a}{b}+\frac{a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}=\frac{3a}{\sqrt[3]{abc}}\)

\(\frac{b}{c}+\frac{b}{c}+\frac{c}{a}\ge\frac{3b}{\sqrt[3]{abc}}\)

\(\frac{c}{a}+\frac{c}{a}+\frac{a}{b}\ge\frac{3c}{\sqrt[3]{abc}}\)

Cộng 3 vế của bddt trên 

=> ĐPCM

Dấu bằng xảy ra khi a=b=c

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2(a+b)}+\frac{a^2}{a^2(b+c)}+\frac{b^2}{b^2(c+a)}+\frac{(\sqrt[3]{abc})^2}{2abc}\)

\(\geq \frac{(c+a+b+\sqrt[3]{abc})^2}{c^2(a+b)+a^2(b+c)+b^2(c+a)+2abc}=\frac{(a+b+c+\sqrt[3]{abc})^2}{(a+b)(b+c)(c+a)}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

10 tháng 7 2019

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

24 tháng 1 2018

bđt cần c/m tương đương với:

\(\left(\frac{b+c}{\sqrt{a}}+\sqrt{a}\right)+\left(\frac{a+c}{\sqrt{b}}+\sqrt{b}\right)+\left(\frac{a+b}{\sqrt{c}}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\\ \ \)\(\left(a+b+c\right)\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)

Mặt khác:

\(a+b+c\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}\)

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\frac{9}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

=> \(VT\ge3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

Ta cần c/m: 

\(3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)

<=> \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt[3]{\sqrt{abc}}=3\)(BĐt Cô-si)

xong rồi bạn nhé

25 tháng 12 2019

dit me may

30 tháng 9 2019

Áp dụng BĐT Cauchy - Schwarz ta có  :

\(VT=\frac{1}{\sqrt{a}}+\frac{3}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)

\(=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)

\(\ge\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{2\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(=\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(\ge\frac{\left(1+2+1+2+2\right)^2}{2\sqrt{3c+2a}+3\sqrt{b}+\sqrt{a}}\)

\(\ge\frac{64}{\sqrt{\left(1+2^2+3\right)\left(a+2a+3c+3b\right)}}\)

\(=\frac{64}{\sqrt{24\left(a+c+b\right)}}=\frac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}=VF\)

Chúc bạn học tốt !!!

11 tháng 8 2020

Mình nghĩ là: 

a = 1

b = 2

c = 4

NV
3 tháng 7 2020

4.

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

5.

\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)

Cộng vế với vế:

\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

NV
3 tháng 7 2020

1.

Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)

\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

2.

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)

Cộng vế với vế:

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)

3.

Từ câu b, thay \(c=1\) ta được:

\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)

NV
28 tháng 9 2019

Đặt \(\left(a;b;c\right)=\left(x^3;y^3;z^3\right)\Rightarrow x^3+y^3+z^3=2\)

Ta có: \(x^3+\frac{2}{3}+\frac{2}{3}\ge3\sqrt[3]{x^3.\frac{4}{9}}=\sqrt[3]{12}x\)

Tương tự: \(y^3+\frac{2}{3}+\frac{2}{3}\ge\sqrt[3]{12}y\); \(z^3+\frac{2}{3}+\frac{2}{3}\ge\sqrt[3]{12}z\)

\(\Rightarrow x^3+y^3+z^3+4\ge\sqrt[3]{12}\left(x+y+z\right)\)

\(\Rightarrow x+y+z\le\frac{6}{\sqrt[3]{12}}=\sqrt[3]{18}\)

Ta có: \(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\ge\frac{9}{\sqrt[3]{18}}=\frac{3\sqrt[3]{12}}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt[3]{\frac{2}{3}}\) hay \(a=b=c=\frac{2}{3}\)

29 tháng 1 2020

Áp dụng BĐT Cô - si cho 2 số không âm, ta có:

\(VT=\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\text{Σ}_{cyc}\sqrt{\frac{bc}{a}}\right)\)

\(\Leftrightarrow\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)\)

\(+\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)\)

\(\Leftrightarrow\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)

\(+3\sqrt[6]{abc}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

(Dấu "="\(\Leftrightarrow a=b=c=1\))

12 tháng 4 2020

\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\frac{2\sqrt{bc}}{\sqrt{a}}+\frac{2\sqrt{ca}}{\sqrt{b}}+\frac{2\sqrt{ab}}{\sqrt{c}}=2\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)\)

\(=\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)+\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)\)

\(\ge2\sqrt{\sqrt{\frac{bc}{a}}\sqrt{\frac{ca}{b}}}+2\sqrt{\sqrt{\frac{ca}{b}}\sqrt{\frac{ab}{c}}}+2\sqrt{\sqrt{\frac{ab}{c}}\sqrt{\frac{bc}{a}}}\)

\(=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{a}\sqrt{b}\sqrt{c}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)