K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017
ghhjkkkk
18 tháng 1 2018

VT = 1 + \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{xy}\)

= 1 + \(\frac{y}{xy}\)\(\frac{x}{xy}\)\(\frac{1}{xy}\)

= 1 + \(\frac{x+y+1}{xy}\)

= 1 + \(\frac{1+1}{xy}\)

= 1 + \(\frac{2}{xy}\)

\(\frac{xy+1}{xy}\)= 1 +\(\frac{1}{xy}\)

>hoặc= 9

a) Ta có: \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)

\(=\left(2x\right)^3+\left(\frac{1}{3}\right)^3-8x^3+\frac{1}{27}\)

\(=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}\)

\(=\frac{2}{27}\)

Vậy: Giá trị của biểu thức \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) không phụ thuộc vào biến

b) Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)

\(=x^3-3x^2+3x-1-\left(x^3-1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

\(=0\)

Vậy: Giá trị của biểu thức \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) không phụ thuộc vào biến

c) Ta có: \(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

\(=yx^4-y^5-yx^4+y^5\)

\(=0\)

Vậy: Giá trị của biểu thức \(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\) không phụ thuộc vào biến

6 tháng 11 2018

hùi nãy mem nào k sai cho t T_T t buồn 

\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)

\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)

\(=\frac{27}{8}-\frac{3}{8}+6=9\)

\(\Rightarrow\)\(VT\ge9\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)

Chúc bạn học tốt ~ 

6 tháng 11 2018

\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

Chúc bạn học tốt ~ 

8 tháng 2 2021

dùng bđt phụ \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\) với bđt Cô-si nhé