K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc HIB=1/2*sđ cung HB=90 độ

=>HI vuông góc AB

góc CKH=1/2*sđ cung CH=90 độ

=>HK vuông góc AC

góc AIH=góc AKH=góc KAI=90 độ

=>AIHK là hình chữ nhật

=>góc AIK=góc AHK=góc C

=>góc KIB+góc KCB=180 độ

=>KIBC nội tiếp

b: góc O1IK=góc O1IH+góc KIH

=góc O1HI+góc KAH

=góc HAC+góc HCA=90 độ

=>IK làtiếp tuyến của (O1)

góc O2KI=góc O2KH+góc IKH

=góc O2HK+góc IAH

=góc HAB+góc HBA=90 độ

=>IK là tiếp tuyến của (O2)

11 tháng 10 2019

a, MPHQ là hình chữ nhật => MH = PQ

b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA

c, P M H ^ = M B H ^ => P Q H ^ = O 2 Q B ^ => PQ là tiếp tuyến của  O 2

Tương tự PQ cũng là tiếp tuyến ( O 1 )

30 tháng 4 2023

a) a1. Chứng minh \(BAOE\) là tứ giác nội tiếp.

Tứ giác \(BAOE:\left\{{}\begin{matrix}\hat{OEB}=90^o\left(\text{tiếp tuyến}\right)\\\hat{OAB}=90^o\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\hat{OEB}+\hat{OAB}=90^o+90^o=180^o\Rightarrow BAOE\) là tứ giác nội tiếp (đpcm).

a2. Chứng minh : \(BH.BO=BD.BC\).

Ta có : \(\hat{ADC}=90^o\) (góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow AD\) là đường cao của \(\Delta ABC\) vuông tại \(A\Rightarrow BD.BC=AB^2\left(1\right).\)

Mặt khác : \(\left\{{}\begin{matrix}OA=OE=R\left(gt\right)\\AB=BE\left(\text{tính chất hai tiếp tuyến cắt nhau}\right)\end{matrix}\right.\)

\(\Rightarrow OB\) là đường trung trực của \(AE\Rightarrow\hat{AHB}=90^o\)

\(\Rightarrow AH\) là đường cao của \(\Delta ABC\) vuông tại \(A\Rightarrow BH.BO=AB^2\left(2\right).\)

Từ \(\left(1\right),\left(2\right)\Rightarrow BH.BO=BD.BC\) (đpcm).

b) b1. Chứng minh \(DHOC\) là tứ giác nội tiếp.

Tứ giác \(AHDB:\hat{AHB}=\hat{ADB}=90^o\left(cmt\right)\). Mà hai góc này có đỉnh kề nhau trong tứ giác và cùng nhìn cạnh \(AB\) nên đây là tứ giác nội tiếp \(\Rightarrow\hat{ABH}=\hat{ADH}.\)

Mà : \(\left\{{}\begin{matrix}\hat{ADH}+\hat{HDC}=90^o\left(=\hat{ADC}\left(cmt\right)\right)\\\hat{ABH}+\hat{HAB}=90^o\left(\text{hai góc phụ nhau}\right)\end{matrix}\right.\Rightarrow\hat{HDC}=\hat{HAB}\left(3\right).\)

Mặt khác : \(\hat{AOB}=\hat{HAB}\left(\text{cùng phụ }\hat{ABH}\right)\left(4\right).\)

Từ \(\left(3\right),\left(4\right)\Rightarrow\hat{AOB}=\hat{HDC}\Rightarrow DHOC\) là tứ giác nội tiếp (dấu hiệu nhận biết) (đpcm).

b2. Chứng minh : \(\hat{BHD}=\hat{OHC}\).

Do \(DHOC\) là tứ giác nội tiếp (cmt) \(\Rightarrow\hat{OCD}=\hat{BHD}\left(5\right)\) (cùng bù với \(\hat{OHD}\)) và \(\hat{OHC}=\hat{ODC}\left(6\right)\) (hai góc có đỉnh kề nhau cùng nhìn cạnh \(OC\)).

Mặt khác : \(OA=OD=R\Rightarrow\Delta OAD\) cân tại \(O\Rightarrow\hat{ODA}=\hat{OAD}.\)

Và : \(\left\{{}\begin{matrix}\hat{OAD}+\hat{OCD}=90^o\left(\text{hai góc phụ nhau}\right)\\\hat{ODA}+\hat{ODC}=90^o\left(=\hat{ADC}\right)\end{matrix}\right.\Rightarrow\hat{OCD}=\hat{ODC}\left(7\right).\)

Từ \(\left(5\right),\left(6\right),\left(7\right)\Rightarrow\hat{BHD}=\hat{OHC}\) (đpcm).

c) Chưa nghĩ ra ạ:)

30 tháng 4 2023

1 tháng 7 2019

Đáp án D.

Gắn hệ trục tọa độ Oxy sao cho O 1 ≡ O  (gốc tọa độ).

Phương trình đường tròn O 1 ; 5 là  x 2 + y 2 = 5 2 ⇒ y = ± 25 − x 2 .

Tam giác O 1 O 2 A  vuông tại O 2 , có  O 1 O 2 = O 1 A 2 − O 2 A 2 = 5 2 − 3 2 = 4.

Phương trình đường tròn O 2 ; 3 là  x − 4 2 + y 2 = 9 ⇒ y = ± 9 − x − 4 2 .

Gọi V 1 là thể tích của khối tròn xoay sinh ra khi quay hình phẳng D 1 được giới hạn bởi các đường y = 9 − x − 4 2 ,   y = 0 ,   x = 4 ,   x = 7 quanh trục tung  ⇒ V 1 = π ∫ 4 7 9 − x − 4 2 d x .

Gọi V 2 là thể tích của khối tròn xoay sinh ra khi quay hình phẳng D 2 được giới hạn bởi các đường y = 25 − x 2 ,   y = 0 ,   x = 4 ,   x = 5 quanh trục tung  ⇒ V 2 = π ∫ 4 5 25 − x 2 d x .

Khi đó, thể tích cần tính là:

V = V 1 − V 2 = π ∫ 4 7 9 − x − 4 2 d x − π ∫ 4 5 25 − x 2 d x = 40 π 3 .