Dùng phương pháp hệ số bất định :
a) 4x4 + 4x3 + 5x2 + 2x + 1 ;
b) x4 - 7x3 + 14x2 - 7x + 1 ;
c) x4 - 8x + 63 ;
d) (x + 1)4 + (x2 + x + 1)2.
2. a) x8 + 14x4 + 1 ;
b) x8 + 98x4 + 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trả lời
(1265) Phương pháp hệ số bất định - Toán lớp 8 - thầy Tạ Anh Sơn - HOCMAI - YouTube
ví dụ ở đó luôn
vào thống kê hỏi đáp
hc tốt
Phương pháp đồng nhất hệ số (phương pháp hệ số bất định) có cơ sở như sau:
Hai đa thức (dạng thu gọn ) là đồng nhất khi và chỉ khi mọi hệ số của các đơn thức đồng dạng trong hai đa thức phải bằng nhau
VD ax2+bx+c=2x2+5x+3 trong đó a,b,c là hằng số, x là ẩn
=> \(\hept{\begin{cases}a=2\\b=5\\c=3\end{cases}}\)
Đa thức bậc 3,4 tương tự nhé
\(a,x^4-4x^3-19x^2+106x-120=0\\ \Rightarrow\left(x-4\right)\left(x^3-19x+30\right)=0\Rightarrow\left(x-4\right)\left(x+5\right)\left(x^2-5x+6\right)=0\\ \Rightarrow\left(x-4\right)\left(x+5\right)\left(x-2\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=-5\\x=2\\x=3\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{-5;2;3;4\right\}\)
\(b,4x^4+12x^3+5x^2-6x-15=0\\ \Rightarrow\left(x-1\right)\left(4x^3+16x^2+21x+15\right)=0\\ \Rightarrow\left(x-1\right)\left[\left(4x^3+10x^2\right)+\left(6x^2+15x\right)+\left(6x+15\right)\right]=0\\ \Rightarrow\left(x-1\right)\left[2x^2\left(2x+5\right)+3x\left(2x+5\right)+3\left(2x+5\right)\right]=0\\ \Rightarrow\left(x-1\right)\left(2x+5\right)\left(2x^2+3x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{2}\\2x^2+3x+3=0\left(vô.lí\right)\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{1;-\dfrac{5}{2}\right\}\)
Ta có : \(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}\Leftrightarrow\hept{\begin{cases}\left(2m+10\right)x+6x=2\\3mx+6x=-12\end{cases}}}\)
Trừ vế 1 cho vế 2 phương trình,Ta được:
(10 - m )x = 14 (*)
TH1 : 10 - m \(\ne\)0 \(\Leftrightarrow\) m \(\ne\) 10
Ta có : (*) \(\Leftrightarrow\) \(x=\frac{14}{10-m}\)
Ta tìm được : \(y=\frac{5m+20}{m-10}\)
Hệ có nghiệm duy nhất: \(\left(x;y\right)=\left(\frac{14}{10-m};\frac{5m+20}{m-10}\right)\)
TH2 : 10 - m = 0 \(\Leftrightarrow\) m = 10
Phương trình (*) vô nghiệm \(\Leftrightarrow\) Hệ vô nghiệm
Đáp số: +m\(\ne\)0 . Hệ có nghiệm duy nhất :
\(\left(x;y\right)=\left(\frac{14}{10-m};\frac{5m+20}{m-10}\right)\)
+ m = 0 (Hệ vô nghiệm )
Ta có 2 x - 1 ≥ 3 x - m ≤ 0 ⇔ x ≥ 2 x ≤ m . Hệ có nghiệm duy nhất khi và chỉ khi m = 2
11) Ta có: \(a^6+a^4+a^2b^2+b^4-b^6\)
\(=a^6-b^6+a^4+a^2b^2+b^4\)
\(=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^4+a^2b^2+b^4\right)\)
\(=\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2+1\right)\)
12) Ta có: \(x^3+3xy+y^3-1\)
\(=\left(x^3+3x^2y+3xy^2+y^3-1\right)-3x^2y-3xy^2+3xy\)
\(=\left[\left(x+y\right)^3-1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[x^2+2xy+y^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)
14) Ta có: \(x^8+x+1\)
\(=x^8+x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3+x^2-x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
15) Ta có: \(x^8+3x^4+4\)
\(=x^8+4x^4+4-x^4\)
\(=\left(x^4+2\right)^2-\left(x^2\right)^2\)
\(=\left(x^4-x^2+2\right)\left(x^4+x^2+2\right)\)
Ta có: 2 x + 1 > 3 x - 2 - x - 3 < 0 ⇔ - x > - 3 - x < 3 ⇔ x < 3 x > - 3 ⇔ - 3 < x < 3
Ta có: 2 x - 1 > 0 x - m < 2 ⇔ x > 1 2 x < 2 + m
Để hệ bất phương trình có nghiệm khi và chỉ khi 1 2 < 2 + m ⇔ m > - 3 2