K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

ggggghgdhfdhfghsagyfgfghhg

29 tháng 3 2020

Ta có : A = \(\left(\frac{x+2}{x.\sqrt{x}-1}+\frac{\sqrt{x}+2}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

                 = \(\frac{x+2+x+\sqrt{x}-2-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

                = \(\frac{x-1}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}=1\)

Vậy A = 1

2 tháng 8 2019

\(P=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)

\(P=\left[-\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\left(-\frac{\sqrt{x}}{2}+\frac{1}{2\sqrt{x}}\right)^2\)

\(P=\left[-\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\left(\frac{1}{4x}+\frac{1}{4}-\frac{1}{2}\right)\)

\(P=-\frac{4\sqrt{x}.\left(\frac{1}{4x}-\frac{1}{2}+\frac{x}{4}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(P=-\frac{4.\frac{x^2-2x+1}{4x}.\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)

\(P=-\frac{\frac{x^2-2x+1}{\sqrt{x}}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(P=-\frac{x^2-2x+1}{\sqrt{x}.\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(P=-\frac{\sqrt{x}.\left(x-1\right)}{x}\)

11 tháng 9 2016

Bạn xem lại cái đề thử đúng không nha

11 tháng 9 2016

Đề đúng đó bạn. trong đề thi tuyển sinh lớp 10 tỉnh bình định năm 2009-2010 

29 tháng 6 2019

ĐK : x>0, x khác 1

\(A=\left(\frac{1}{\sqrt{x}+1}+\frac{2\left(1-\sqrt{x}\right)}{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{2}{x-1}\right)\)

\(=\left(\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)