K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

a) \(3-x^2+5x=-\left(x^2-5x-3\right)\)

\(=-\left(x^2-2x.\frac{5}{2}+\frac{10}{4}-\frac{22}{4}\right)\)

\(=-\left(x-\frac{5}{2}\right)^2+\frac{22}{4}\)

\(=-\left(x-\frac{5}{2}\right)^2+\frac{11}{2}\)

Mà: \(\left(x-\frac{5}{2}\right)^2\ge0\)\(\Leftrightarrow-\left(x-\frac{5}{2}\right)^2\le0\)

\(\Leftrightarrow-\left(x-\frac{5}{2}\right)^2+\frac{11}{2}\le\frac{11}{2}\)

\(\Leftrightarrow3-x^2+5x\le\frac{11}{2}\)

Dấu = xảy ra khi: \(\left(x-\frac{5}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{5}{2}=0\)

\(\Leftrightarrow x=\frac{5}{2}\)(T/m)

Vậy GTLN của 3 - x2 + 5x là \(\frac{11}{2}\)khi x = \(\frac{5}{2}\).

23 tháng 7 2019

b) \(12-6x^2-6x=-6\left(x^2+x-2\right)\)

\(=-6\left(x^2+2x.\frac{1}{2}+\frac{1}{4}-\frac{9}{4}\right)\)

\(=-6\left(x+\frac{1}{2}\right)^2+\frac{27}{2}\)

Mà: \(\left(x+\frac{1}{2}\right)^2\ge0\)\(\Leftrightarrow-6\left(x+\frac{1}{2}\right)^2\le0\)

\(\Leftrightarrow-6\left(x+\frac{1}{2}\right)^2+\frac{27}{2}\le\frac{27}{2}\)\(\Leftrightarrow12-6x^2-6x\le\frac{27}{2}\)

Dấu = xảy ra khi: \(\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)\(\Leftrightarrow x=-\frac{1}{2}\)(T/m)

Vậy GTLN của 12 - 6x2 - 6x là \(\frac{27}{2}\)khi x = \(-\frac{1}{2}\).

23 tháng 7 2019

Tìm GTLN của hàm số trên R hả bạn?

6 tháng 1 2021

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

DD
6 tháng 11 2021

a) \(A=6x-x^2-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)

Dấu \(=\)khi \(x-3=0\Leftrightarrow x=3\).

b) \(B=x^2-5x-2=x^2-2.\frac{5}{2}x+\left(\frac{5}{2}\right)^2-\frac{33}{4}=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge-\frac{33}{44}\)

Dấu \(=\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

6 tháng 11 2021

a) \(6x-x^2-11\)

\(=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x^2-6x+9+2\right)\)

\(=-[\left(x-3\right)^2+2]\)

Mà: \(\left(x-3\right)^2\ge0\)

\(\Rightarrow-\left(x-3\right)^2\le0\)

\(\Rightarrow-\left(x-3\right)^2-2\le0-2\)

\(\Rightarrow A\le-2\)

Dấu '' = '' xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x=3\)

Vậy giá trị lớn nhất của biểu thức \(6x-x^2-11=-2\) khi \(x=3\)

b) \(x^2-5x-2\)

\(=\left(x^2-2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{33}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\)

Mà: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge\frac{-33}{4}\forall x\)

Dấu '' = '' xảy ra khi: \(x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)

Vậy giá trị nhỏ nhất của biểu thức \(x^2-5x-2=\frac{-33}{4}\)  khi \(x=\frac{5}{2}\)

18 tháng 8 2020

Em đng cần gấp ạ

18 tháng 8 2020

B = 2x2 + 5x + 7

     = 2( x2 + 5/2x + 25/16 ) + 31/8

     = 2( x + 5/4 )2 + 31/8

\(2\left(x+\frac{5}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)

Đẳng thức xảy ra <=> x + 5/4 => x = -5/4

=> MinB = 31/8 <=> x = -5/4

C = 6x - x2 - 12 = -( x2 - 6x + 9 ) - 3 = -( x - 3 )2 - 3

\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2-3\le-3\)

Đẳng thức xảy ra <=> x - 3 = 0 => x = 3

=> MaxC = -3 <=> x = 3

D = -3x2 - x + 5 = -3( x2 + 1/3x + 1/36 ) + 61/12 = -3( x + 1/6 )2 + 61/12

\(-3\left(x+\frac{1}{6}\right)^2\le0\forall x\Rightarrow-3\left(x+\frac{1}{6}\right)^2+\frac{61}{12}\le\frac{61}{12}\)

Đẳng thức xảy ra <=> x + 1/6 = 0 => x = -1/6

=> MaxD = 61/12 <=> x = -1/6

22 tháng 10 2019

toi ko bt

A= -4 - x^2 +6x

  =-(x2-6x+9)+5

=-(x-3)2+5\(\le\)5

Dấu "=" xảy ra khi x=3

Vậy...............

B= 3x^2 -5x +7

\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)-\frac{59}{12}\)

\(=3\left(x-\frac{5}{6}\right)^2-\frac{59}{12}\ge\frac{-59}{12}\)

Dấu "=" xảy ra khi \(x=\frac{5}{6}\)

Vậy.................