tìm số nguyên dương a sao cho 2a là số chính phương và 3a là số lập phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n là số có 2 chữ số nên =>9<n<100 =>19<n<201
Mà n là số chính phương lẻ nên => n= 25 ; 49 ; 81; 121; 169
vì chỉ có trường hợp 3n+1=121 (là số chính phương ) thỏa mãn bài ra nên : => n=40
mấy trường hợp n=25;49;81;121;169 bạn tự thử nhé
ta có a có 2 cs
->10<=a<100
->21<=2a+1<201 !à 2a +1 là số lẻ,2a+1 la scp
->2a+1=25;49;81;121;169
->a=12;24;40;60;84
->3a+1=37;73;121;181;252. Mà 3a+1 là scp
->3a+1=121
->a=40
vậy a=40
k cho mk nha
Vì n là số có 2 chữ số nên =>9<n<100 =>19<n<201
Mà n là số chính phương lẻ nên => n= 25 ; 49 ; 81; 121; 169
vì chỉ có trường hợp 3n+1=121 (là số chính phương ) thỏa mãn bài ra nên : => n=40
mấy trường hợp n=25;49;81;121;169 bạn tự thử nhé
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.