Tìm x
\(\frac{1}{5^x}.\frac{1}{5^8}.\frac{1}{25^3}=\frac{1}{5^{60}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1+0,6-\frac{3}{7}}{\frac{8}{3}+\frac{8}{5}-\frac{8}{7}}=\frac{\frac{3}{3}+\frac{3}{5}-\frac{3}{7}}{\frac{8}{3}+\frac{8}{5}-\frac{8}{7}}=\frac{3.\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\right)}{8.\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\right)}=\frac{3.1}{8.1}=\frac{3}{8}\)
\(\frac{\frac{1}{3}+0,25-\frac{1}{5}+0,125}{\frac{7}{6}+\frac{7}{8}-0,7+\frac{7}{16}}=\frac{\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{8}}{\frac{7}{6}+\frac{7}{8}-\frac{7}{10}+\frac{7}{16}}=\frac{1.\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{8}\right)}{7.\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{8}\right)}=\frac{1.1}{7.1}=\frac{1}{7}\)
=>\(\frac{3}{8}-\frac{1}{7}=\frac{13}{56}\)
\(\frac{1}{5^x}.\frac{1}{5^8}.\frac{1}{25^3}=\frac{1}{5^{60}}\)
=> \(\frac{1}{5^x.5^8.25^3}=\frac{1}{5^{60}}\)
=> \(\frac{1}{5^x.5^8.\left(5^2\right)^3}=\frac{1}{5^{60}}\)
=> \(\frac{1}{5^x.5^8.5^{2.3}}=\frac{1}{5^{60}}\)
=> \(\frac{1}{5^x.5^8.5^6}=\frac{1}{5^{60}}\)
=> \(\frac{1}{5^{x+8+6}}=\frac{1}{5^{60}}\)
=> \(\frac{1}{5^{x+14}}=\frac{1}{5^{60}}\)
=> \(x+14=60\)
=> \(x=46\)
1 . 1 . 1 = 1
5^x 5^8 25^3 5^60
<=> 1 . 1 . 1 = 1
5^x 5^8 5^6 5^60
<=> 1.1.1 = 1
5^x . 5^8 . 5^6 5^60
<=> 1 = 1
5^x+14 5^60
<=> x+14 =60
<=> x = 60-14
=> x = 46