Tính
T=\(\frac{\sqrt{4+\sqrt{3}+\sqrt{4-\sqrt{3}}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(A=\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}>0\)
<=> \(A.\sqrt{4+\sqrt{13}}=\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}\)
<=> \(A^2\left(4+\sqrt{13}\right)=4+\sqrt{3}+4-\sqrt{3}+2\sqrt{13}\)
<=> \(A^2\left(4+\sqrt{13}\right)=2\left(4+\sqrt{13}\right)\)
<=> \(A=\sqrt{2}\)
Vậy: \(\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\)
\(=\sqrt{2}+\sqrt{25-2.5.\sqrt{2}+2}\)
\(=\sqrt{2}+\left(5-\sqrt{2}\right)=5\)
Câu hỏi của Trân Vũ Mai Ngọc - Toán lớp 9 - Học toán với OnlineMath
Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)
=1
T=4,06731601
Em tham khảo đề bài và bài làm tại link: Câu hỏi của Trân Vũ Mai Ngọc - Toán lớp 9 - Học toán với OnlineMath