phân tích đa thức thành nhân tử
A = \(x^3-x^2-4x+64\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =x(4x^2+4x+1)
=x(2x+1)^2
b: =(x-y)^2-49
=(x-y-7)(x-y+7)
a) \(=\left(2x-1\right)^2\)
b) \(=x\left(y^2-x^2+2x-1\right)=x\left[y^2-\left(x-1\right)^2\right]=x\left(y-x+1\right)\left(y+x-1\right)\)
a) \(4\left(x+y\right)\)
b) \(\left(x-3y\right)^2\)
c) \(x^3-x-x^2+1=x\left(x^2-1\right)-\left(x^2-1\right)=\left(x^2-1\right)\left(x-1\right)=\left(x-1\right)\left(x+1\right)\left(x-1\right)\)
a) \(4 (x + y)\)
b) \((x - 3y)^2\)
c) \(x^3 - x - x^2 + 1 = x (x^2 - 1) - (x^2 - 1) = (x^2 - 1) (x - 1) = (x - 1) (x + 1) (x - 1)\)
a) \(4x^2\left(x+3\right)-8x\left(3+x\right)=4x\left(x+3\right)\left(x-2\right)\)
b) \(4x^2+y^2-25+4xy=\left(2x+y\right)^2-25=\left(2x+y-5\right)\left(2x+y+5\right)\)
c) \(\left(x-3\right)^2-\left(x+2\right)^2=\left(x-3-x-2\right)\left(x-3+x+2\right)=-5\left(2x-1\right)\)
a: Ta có: \(x^2-6x+9-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-y-3\right)\left(x+y-3\right)\)
b: Ta có: \(x^3+4x^2+4x\)
\(=x\left(x^2+4x+4\right)\)
\(=x\left(x+2\right)^2\)
c: Ta có: \(4xy-4x^2-y^2+9\)
\(=-\left(4x^2-4xy+y^2-9\right)\)
\(=-\left(2x-y-3\right)\left(2x-y+3\right)\)
a: \(=x^2\left(x-2\right)\)
b: \(=\left(x-3\right)\left(2x-9\right)\)
\(a,=x^2\left(x-2\right)\\ b,=\left(x-3\right)\left(2x-9\right)\\ c,=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)
\(A=x^3-x^2-4x+64\)
\(=\left(x+4\right)\left(x^2-4x+16\right)-x\left(x+4\right)\)
\(=\left(x+4\right)\left(x^2-4x+16-x\right)=\left(x+4\right)\left(x^2-5x+16\right)\)