K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

Ta có

\(2^{44}=\left(2^4\right)^{11}\) luôn tận cùng 6

=> \(8.2^{44}\) luôn tận cùng 8

=> \(2+8.2^{44}⋮20\left(1\right)\)

\(9.3^{4n}-9=9\left(81^n-1\right)⋮\left(81-1\right)⋮20\left(2\right)\)

\(2020⋮20\left(3\right)\)

Từ (1);(2);(3)

=> \(9.3^{4n}-8.2^{44}+2019⋮20\)(ĐPCM)

20 tháng 7 2019

Trần Phúc Khang

vì sao lại là 2020⋮20

còn 2019 thì sao nhờ

vs lại 2+8.22^4⋮20 thì số 2 đó để ở đâu và nó có liên quan đến 2019 ko bạn

Cảm ơn nhiều.yeu

7 tháng 10 2019

C1: Có: \(9.3^{4n}=9.81^n\equiv1.1^n\equiv1\left(mod4\right)\)

\(8.2^{4n}=8.4^{2n}\equiv8\left(-1\right)^{2n}\equiv0\left(mod4\right)\)

\(2019\equiv3\left(mod4\right)\)

=>  \(M=9.3^{4n}-8.2^{4n}+2019\equiv1-0+3\equiv0\left(mod4\right)\)

=> \(M=9.3^{4n}-8.2^{4n}+2019⋮4\) (1)

Có: \(9.3^{4n}=9.81^n\equiv4.1^n\equiv4\left(mod5\right)\)

\(8.2^{4n}=8.4^{2n}\equiv3.\left(-1\right)^{2n}\equiv3\left(mod5\right)\)

\(2019\equiv-1\left(mod5\right)\)

=> \(M=9.3^{4n}-8.2^{4n}+2019\equiv0\left(mod5\right)\)

=> \(M=9.3^{4n}-8.2^{4n}+2019⋮5\) (2)

Từ (1) và (2) và (4;5)=1 ; 4.5=20

=> \(M=9.3^{4n}-8.2^{4n}+2019\) chia hết cho 20.

2 tháng 9 2017

a)Ta có : 

\(n^3-13n\) = \(n^3-12n-n\)\(=n\left(n^2-1\right)-12n\)\(=n.\left(n-1\right)\left(n+1\right)-6.2n\)

* n ; n-1 và n+1 là 3 số nguyên liên tiếp nên n.(n-1)(n+1) chia hết cho 6 vs 6.2n cũng chia hết cho 6

\(\Rightarrow\) n\(^3\)-13n chia hết cho 6

b)Ta có :A=n\(^5\)−5n\(^3\)+4\(n\)=n(n\(^4\)−5n\(^2\)+4)=n[n\(^2\)(n\(^2\)−1)−4(n\(^2\)−1)]=n(n\(^2\)−1)(n\(^2\)−4)=(n−2)(n−1)n(n+1)(n+2)

Vì (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) là tích 5 số nguyên liên tiếp nên chia hết cho 5 (1)

    (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) chứa tích của 3 số nguyên liên tiếp nên chia hết cho 3 (2)

    (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) chứa tích của 2 số chẵn liên tiếp nên chia hết cho 8 (3)

 Mà (3;5;8) =1  (4)

Từ (1) , (2) , (3) , (4) => A⋮(3.5.8)

                                 => A⋮120

c) Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm). 

2 tháng 9 2017

Đề bài c sai r nha bn

13 tháng 2 2019

 Phân tích 5=1.5
nếu n^5+5n^3+4n muốn chja hết cho 5thì phải chja hết cho lân lượt 8,5,3 
ta chứng minh như sau: 
n^5-5n^3+4n= 
(n-2)(n-1)n(n+1)(n+2) 
chja hết cho 8 vì tích 2 số chẵn liên tiếp chia het cho 8, gjả sử n lẻ=>(n-1)(n+1) chja het 8, nếu n chẵn =>n(n+1) chja het 8, 
.cm n chja hết 5, (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiêp nên tồn tại 1 số chja hết cho 5, 
cm chja hết 3, 3 số tự nhjen liên tiếp cũng có 1 số chja hết cho 3. 
Từ chứng mjh trên suy ra dfcm cm n chja hết 5, (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiêp nên tồn tại 1 số chja hết cho 5, 
cm chja hết 3, 3 số tự nhjen liên tiếp cũng có 1 số chja hết cho 3. 
Từ chứng mjh trên suy ra dfcm

13 tháng 2 2019

bạn ơi +5^3 chứ không phải -5^3

27 tháng 3 2017

n^5+5n^3+4n?

27 tháng 3 2017

Hình như cậu chép sai đề :v

29 tháng 2 2016

m+4n :13

m+4n+39m : 13

40m+4n : 13

4(10m+n) : 13

Vài (4;13)=1

=> 10m+n : 13