cho x,y thỏa mãn
mx-y+my=0
tìm điều kiện của m để x,y tỉ lệ thuận
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
\(\left\{{}\begin{matrix}mx+y=3\left(1\right)\\4x+my=6\left(2\right)\end{matrix}\right.\)
TH1: m=0 có nghiệm:\(\left\{{}\begin{matrix}x=\dfrac{6}{4}\\y=3\end{matrix}\right.\) ( Thỏa mãn điều kiện đề bài ) => nhận m=0
TH2: m khác 0 \(\dfrac{m}{4}\ne\dfrac{1}{m}\Leftrightarrow m\ne\pm2\)
\(\left\{{}\begin{matrix}\left(1\right)\Rightarrow y=3-mx\\\left(2\right)\Rightarrow x=\dfrac{6-my}{4}=\dfrac{6-m\left(3-mx\right)}{4}\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)x=3m-6\) \(\Rightarrow x=\dfrac{3}{m+2}\) đối chiếu điều kiện: (x>1)
\(\Rightarrow\dfrac{3}{m+2}-1>0\) \(\Leftrightarrow\dfrac{1-m}{m+2}>0\)
TH1: \(\left\{{}\begin{matrix}1-m< 0\\m+2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\) ( Loại )
TH2: \(\left\{{}\begin{matrix}1-m>0\\m+2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-2\end{matrix}\right.\) ( Nhận ) \(\Rightarrow m\in\left(-2;1\right)\)
Đối chiếu điều kiện: y>0 \(\Leftrightarrow3-m\left(\dfrac{3}{m+2}\right)>0\)
\(\Leftrightarrow\dfrac{2}{m+2}>0\) \(\Leftrightarrow m>-2\)
Gộp cả 2 điều kiện x và y ta được m=-1 và m=0
Nãy giờ gõ nó cứ bị lỗi :D
a: Vì m/1<>-m/1
neen hệ luôn có nghiệm
b: mx-y=2 và x+my=3
=>y=mx-2 và x+m(mx-2)=3
=>y=mx-2 và x(1+m^2)=5
=>x=5/m^2+1 và y=5m/m^2+1-2=(5m-2m^2-2)/m^2+1=(-2m^2+5m-2)/m^2+1
x>0; y>0
=>5>0 và -2m^2+5m-2>0
=>2m^2-5m+2<0
=>2m^2-4m-m+2<0
=>(m-2)(2m-1)<0
=>1/2<m<2
\(\left\{{}\begin{matrix}x+my=3\\x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)y=2\\x=1-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{m-2}\\x=1-\dfrac{4}{m-2}=\dfrac{m-6}{m-2}\end{matrix}\right.\)
a, Ta có x < 0 ; y > 0
\(x< 0\Rightarrow\dfrac{m-6}{m-2}< 0\)
Ta có : m - 2 > m - 6
\(\left\{{}\begin{matrix}m-2>0\\m-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>2\\m< 6\end{matrix}\right.\Leftrightarrow2< m< 6\)
\(y>0\Leftrightarrow\dfrac{2}{m-2}>0\Rightarrow m>2\)
Vậy 2 < m < 6
b, \(x-2y=3\Rightarrow\dfrac{m-6}{m-2}-\dfrac{4}{m-2}=3\Leftrightarrow\dfrac{m-10}{m-2}=3\)
\(\Rightarrow m-10=3m-6\Leftrightarrow2m=-4\Leftrightarrow m=-2\)
Theo tính chất của tỉ lệ thuận có:
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{2x_1}{2y_1}=\frac{3x_2}{3y_2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{2x_1}{2y_1}=\frac{3x_2}{3y_2}=\frac{2x_1-3x_2}{2y_1-3y_2}=\frac{42,5}{-8,5}=-5\)
=> x1 = -5.y1
Vậy 2 đại lượng x và y liên hệ với nhau bởi công thức x = -5.y
y(m-1) = m x
Đẻ x,y tỉ lệ thuận => m\(\ne\)0 ; x-1\(\ne\)0 => m\(\ne\)1
Vậy m \(\ne\)0,1