Tính
\(\frac{3}{3.5}+\frac{3}{5.7}+.......+\frac{3}{997.999}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 2M = 2/1*3 + 2/3*5 + ... + 2/995*997 + 2/ 997*999 = 1-1/3 + 1/3 - 1/5 +... + 1/ 995 - 1/997 + 1/997 - 1 / 999 = 1- 1/999 = 998/999
=> m = 998/999 / 2 = 499/999 (bn tính lại xem nha mk ko có máy tính nên sợ sai)
Vậy M = .....
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\)
\(A=1-\frac{1}{51}\)
\(A=\frac{50}{51}\)
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(2A=3\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\right)\)
\(2A=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(2A=3\left(1-\frac{1}{51}\right)\)
\(2A=3.\frac{50}{51}\)
\(2A=\frac{50}{17}\Rightarrow A=\frac{25}{17}\)'
em gửi bài qua fb của thầy thầy HD nhé: tìm fb của thầy bằng sđt:0975705122 nhé
Ta có :
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
Vậy \(A=\frac{25}{17}\)
Chúc bạn học tốt ~
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\frac{4}{21}\)
\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)
\(B=33\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(C=\frac{1}{2}.\frac{98}{99}\)
\(C=\frac{49}{99}\)
A=3/1*3+3/3*5+3/5*7+...+3/2015*2017
A=3/2*(2/1*3+2/3*5+2/5*7+...+2/2015*2017)
A=3/2*(1-1/3+1/3-1/5+1/5-1/7+...+1/2015-1/2017)
A=3/2*(1-1/2017)
A=3/2*2016/2017
A=3024/2017
A= \(\frac{3}{1.3}\)+\(\frac{3}{3.5}\)+\(\frac{3}{5.7}\)+....+\(\frac{3}{2015.2017}\)
A= \(\frac{3}{2}\).(\(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+...+\(\frac{2}{2015.2017}\))
A= \(\frac{3}{2}\).( 1- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+... \(\frac{1}{2015}\)- \(\frac{1}{2017}\))
A= \(\frac{3}{2}\).(1- \(\frac{1}{2017}\))
A= \(\frac{3}{2}\). \(\frac{2016}{2017}\)
A= \(\frac{3024}{2017}\)
\(2A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{201\cdot203}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{201}-\frac{1}{203}\)
\(2A=1-\frac{1}{203}\)
\(A=\frac{101}{203}\)
A. Đặt A= biểu thức đã cho
=>\(\frac{A}{3}=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
=>\(\frac{A}{3}.2=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
=>\(\frac{2A}{3}-\frac{A}{3}=2-\frac{1}{2^9}\)
=>\(A=\frac{3\left(2^{10}-1\right)}{2^9}\)
B. Đặt B=biểu thức đã cho
\(\Rightarrow\frac{B}{2}=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2015.2017}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)
\(=\frac{1}{3}-\frac{1}{2017}=\frac{2014}{6051}\)
\(\Rightarrow B=\frac{4028}{6051}\)
D = \(\frac{1}{54}-\frac{3}{1.3}-\frac{3}{3.5}-\frac{3}{5.7}-...-\frac{1}{79.81}\)
\(=\frac{1}{54}-\left(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{79.81}\right)\)
\(=\frac{1}{54}-\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{79.81}\right)\)
\(=\frac{1}{54}-\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{79}-\frac{1}{81}\right)\)
\(=\frac{1}{54}-\frac{3}{2}.\left(1-\frac{1}{81}\right)\)
\(=\frac{1}{54}-\frac{3}{2}.\frac{80}{81}\)
\(=\frac{1}{54}-\frac{40}{27}\)
\(=\frac{1}{54}-\frac{80}{54}\)
\(=\frac{79}{54}\)
\(C=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}\)
\(=\frac{100}{101}\)
\(C=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{99}-\frac{1}{101}\right)\)
\(C=\frac{3}{2}\left(1-\frac{1}{101}\right)\)
\(C=\frac{3}{2}.\frac{100}{101}=\frac{150}{101}\)
\(\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{997.999}\)
\(=\frac{3}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{997.999}\right)\)
\(=\frac{3}{2}\left(\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{997}-\frac{2}{999}\right)\)
\(=\frac{3}{2}\left(\frac{2}{3}-\frac{2}{999}\right)\)
\(=\frac{3}{2}.\frac{664}{999}\)
\(=\frac{332}{333}\)
\(\frac{3}{3\cdot5}+\cdot\cdot\cdot+\frac{3}{997\cdot999}\)
\(=\frac{2}{3}\cdot\left(\frac{2}{3\cdot5}+\cdot\cdot\cdot+\frac{2}{997\cdot999}\right)\)
\(=\frac{2}{3}\cdot\left(\frac{1}{3}-\frac{1}{5}+\cdot\cdot\cdot+\frac{1}{997}-\frac{1}{999}\right)\)
\(=\frac{2}{3}\cdot\left(\frac{1}{3}-\frac{1}{999}\right)\)
\(=\frac{2}{3}\cdot\frac{332}{999}\)
\(=\frac{664}{2997}\)