K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

1.  \(2\sqrt{5}-5\sqrt{20}+\sqrt{80}\)

\(2\sqrt{5}-5.2\sqrt{5}+4\sqrt{5}\)

\(2\sqrt{5}-10\sqrt{5}+4\sqrt{5}\)

\(-4\sqrt{5}\)

19 tháng 7 2019

2. B = \(\frac{1}{\sqrt{5}-2}-\sqrt{6-2\sqrt{5}}\)

       = \(\frac{1}{\sqrt{5}-2}-\sqrt{1^2-2\sqrt{5}+\sqrt{15}^2}\)

       = \(\frac{1}{\sqrt{5}-2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)

        = \(\frac{1}{\sqrt{5}-2}-\left|1-\sqrt{5}\right|\)

         = \(\frac{1}{\sqrt{5}-2}-\sqrt{5}+1\left(\sqrt{5}>1\right)\)

         = \(\frac{1}{\sqrt{5}-2}-\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-2\right)}{\sqrt{5}-2}=\frac{1-5+2\sqrt{5}+\sqrt{5}-2}{\sqrt{5}-2}\)

         = \(\frac{-6+3\sqrt{5}}{\sqrt{5}-2}=\frac{3\left(\sqrt{5}-2\right)}{\sqrt{5}-2}=3\)

\(A=5\sqrt{\dfrac{1}{5}}+\dfrac{5}{2}\cdot\sqrt{20}-\sqrt{80}\)

\(=\dfrac{5}{\sqrt{5}}+\dfrac{5}{2}\cdot2\sqrt{5}-4\sqrt{5}\)

\(=\sqrt{5}+5\sqrt{5}-4\sqrt{5}=2\sqrt{5}\)

a) Ta có: \(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)

\(=6\sqrt{5}-3\sqrt{5}+6\sqrt{2}+6\sqrt{2}\)

\(=3\sqrt{5}+12\sqrt{2}\)

b) Ta có: \(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)

\(=\dfrac{12\left(3+\sqrt{5}\right)}{4}-\dfrac{16\left(\sqrt{5}-1\right)}{4}\)

\(=3\left(3+\sqrt{5}\right)-4\left(\sqrt{5}-1\right)\)

\(=9+3\sqrt{5}-4\sqrt{5}+4\)

\(=13-\sqrt{5}\)

c) Ta có: \(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)

\(=\dfrac{10}{\sqrt{5}}+\dfrac{1}{5}\cdot5\sqrt{5}-2\cdot2\sqrt{5}\)

\(=2\sqrt{5}+\sqrt{5}-4\sqrt{5}\)

\(=-\sqrt{5}\)

e) Ta có: \(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\sqrt{3}+1-2+\sqrt{3}\)

\(=2\sqrt{3}-1\)

f) Ta có: \(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{5}+1-\sqrt{5}+2\)

=3

e) Ta có: \(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\sqrt{3}+1-2+\sqrt{3}\)

\(=2\sqrt{3}-1\)

f) Ta có: \(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{5}+1-\sqrt{5}+2\)

=3

a) Ta có: \(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)

\(=6\sqrt{5}-3\sqrt{5}+6\sqrt{2}+6\sqrt{2}\)

\(=3\sqrt{5}+12\sqrt{2}\)

b) Ta có: \(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)

\(=\dfrac{12\left(3+\sqrt{5}\right)}{4}-\dfrac{16\left(\sqrt{5}-1\right)}{4}\)

\(=3\left(3+\sqrt{5}\right)-4\left(\sqrt{5}-1\right)\)

\(=9+3\sqrt{5}-4\sqrt{5}+4\)

\(=13-\sqrt{5}\)

a) Ta có: \(3\sqrt{2}+4\sqrt{8}-\sqrt{18}\)

\(=\sqrt{2}\left(3+4\cdot2-3\right)\)

\(=8\sqrt{2}\)

b) Ta có: \(\sqrt{3}-\frac{1}{3}\sqrt{27}+2\sqrt{507}\)

\(=\sqrt{3}\left(1-\frac{1}{3}\cdot\sqrt{9}+2\cdot\sqrt{169}\right)\)

\(=\sqrt{3}\left(1-1+26\right)\)

\(=26\sqrt{3}\)

c) Ta có: \(\sqrt{25a}+\sqrt{49a}-\sqrt{64a}\)

\(=\sqrt{25}\cdot\sqrt{a}+\sqrt{49}\cdot\sqrt{a}-\sqrt{64}\cdot\sqrt{a}\)

\(=\sqrt{a}\left(5+7-8\right)\)

\(=4\sqrt{a}\)

d) Ta có: \(-\sqrt{36b}-\frac{1}{3}\sqrt{54b}+\frac{1}{5}\sqrt{150b}\)

\(=-\sqrt{6b}\cdot\sqrt{6}-\frac{1}{3}\cdot\sqrt{6b}\cdot\sqrt{9}+\frac{1}{5}\cdot\sqrt{6b}\cdot\sqrt{25}\)

\(=-\sqrt{6b}\left(\sqrt{6}+1-1\right)\)

\(=-\sqrt{6b}\cdot\sqrt{6}=-6\sqrt{b}\)

21 tháng 6 2018

a) \(\sqrt{20}+2\sqrt{45}-3\sqrt{80}+\sqrt{125}=\sqrt{4.5}+2\sqrt{9.5}-3\sqrt{16.5}+\sqrt{25.5}=2\sqrt{5}+6\sqrt{5}-12\sqrt{6}+5\sqrt{5}=\sqrt{5}\) b) \(\sqrt{6+2\sqrt{5}}-\sqrt{21+4\sqrt{5}}+\sqrt{5}\left(\sqrt{5}+1\right)=\sqrt{5+2\sqrt{5}+1}-\sqrt{20+2.2\sqrt{5}+1}+\sqrt{5}\left(\sqrt{5}+1\right)=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(2\sqrt{5}+1\right)^2}+\sqrt{5}\left(\sqrt{5}+1\right)\) = / \(\sqrt{5}+1\) / + / \(2\sqrt{5}+1\) / \(+\sqrt{5}\left(\sqrt{5}+1\right)\)

\(=\sqrt{5}+1\) + \(2\sqrt{5}+1\) \(+\sqrt{5}\left(\sqrt{5}+1\right)\)

= \(4\sqrt{5}+7\)

21 tháng 6 2018

Bạn mới trả lời câu a,b thôi đúng không?Nhưng mà rất cảm ơn bạn!:)))

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Lời giải:
a.

$=2\sqrt{5}-9\sqrt{5}-2\sqrt{5}=(2-9-2)\sqrt{5}=-9\sqrt{5}$

b.

$=36\sqrt{6}-2\sqrt{6}+6\sqrt{6}=(36-2+6)\sqrt{6}=40\sqrt{6}$

a: Ta có: \(A=\left(\dfrac{6+\sqrt{20}}{3+\sqrt{5}}+\dfrac{\sqrt{14}-\sqrt{2}}{\sqrt{7}-1}\right):\left(2+\sqrt{2}\right)\)

\(=\left(2+\sqrt{2}\right):\left(2+\sqrt{2}\right)\)

=1

b: Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\dfrac{11}{2\sqrt{3}+1}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+1\)

=1

3 tháng 1 2021

a, \(A=5\sqrt{\dfrac{1}{1}}+\dfrac{5}{2}\sqrt{20}+\sqrt{80}=5+5\sqrt{5}+4\sqrt{5}=5+9\sqrt{5}\)

b, Vì \(\sqrt{2}-1>0\Rightarrow\) Hàm số đồng biến

c, Hai đường thẳng đã cho song song khi \(\left\{{}\begin{matrix}m^2+2=6\\m\ne2\end{matrix}\right.\Leftrightarrow m=-2\)

13 tháng 7 2016

a) \(\left(3+1\sqrt{6}-\sqrt{33}\right)\left(\sqrt{22}+\sqrt{6}+4\right)\)

\(=\sqrt{3}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right).\sqrt{2}\left(\sqrt{11}+\sqrt{3}+2\sqrt{2}\right)\)

\(=\sqrt{6}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right)\left(\sqrt{3}+2\sqrt{2}+\sqrt{11}\right)\)

\(=\sqrt{6}\left[\left(\sqrt{3}+2\sqrt{2}\right)^2-11\right]=\sqrt{6}\left(11+4\sqrt{6}-11\right)=\sqrt{6}.4\sqrt{6}=6.4=24\)

b) \(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)=\left(\frac{5+2\sqrt{6}+10-4\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}\right)\left(15+2\sqrt{6}\right)\)

\(=\left(15-2\sqrt{6}\right)\left(15+2\sqrt{6}\right)=15^2-24=201\)

C) \(\left(\frac{4}{3}.\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\right)\)

\(=\left(\frac{4}{\sqrt{3}}+\frac{\sqrt{6}}{\sqrt{3}}+\frac{\sqrt{10}}{\sqrt{3}}\right)\left(\frac{\sqrt{6}}{\sqrt{5}}+\frac{\sqrt{10}}{\sqrt{5}}-\frac{4}{\sqrt{5}}\right)\)

\(=\frac{1}{\sqrt{15}}\left(\sqrt{6}+\sqrt{10}+4\right)\left(\sqrt{6}+\sqrt{10}-4\right)=\frac{1}{\sqrt{15}}\left[\left(\sqrt{6}+\sqrt{10}\right)^2-16\right]\)

\(=\frac{1}{\sqrt{15}}\left(16+4\sqrt{15}-16\right)=\frac{4\sqrt{15}}{\sqrt{15}}=4\)

d) \(\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1990+2\sqrt{1989}}=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1989+2\sqrt{1989}+1}\)

\(=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{\left(\sqrt{1989}+1\right)^2}=\left(\sqrt{1989}-1\right)\left(\sqrt{1989}+1\right)=1989-1=1988\)

e) \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)