tìm x
\(\frac{x^2}{\left(\sqrt{x+1}+1\right)}=x-4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}-2}{\sqrt{x}+2}\right].\left[\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}+\sqrt{x}+4\right]\) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(=\frac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}+2}.\left(x+5\right)\)
\(=\frac{x+5}{\sqrt{x}+2}\)
\(=\frac{2\left(\sqrt{x}+2\right)}{\sqrt{x}+2}+\frac{x-2\sqrt{x}+1}{\sqrt{x}+2}\)
\(=2+\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+2}\ge2\)
Dấu '=' xảy ra khi \(x=1\)
Vậy \(A_{min}=2\) khi \(x=1\)
\(\frac{x^2}{\sqrt{x+1}+1}=x-4\)
\(\Leftrightarrow x^2=\left(x-4\right)\left(\sqrt{x+1}+1\right)\)
\(\Leftrightarrow x^2=x-4\sqrt{x+1}+x-4\)
\(\Leftrightarrow x-4\sqrt{x+1}+x-4=x^2\)
\(\Leftrightarrow2x-4\sqrt{x+1}-4=x^2\)
\(\Leftrightarrow-2\left(x+2\sqrt{x+1}+2\right)=x^2\)
\(\Leftrightarrow2\left(x+1+2.\sqrt{x+1}.1+1\right)=x^2\)
\(\Leftrightarrow-2\left(\sqrt{x+1}+1\right)^2=x^2\)
# đến đây thì mk bó tay.com , bn nào giải đc lm nốt hộ mk nhé..!!!
Nếu mk lm sai ở đâu thì cứ ns mk , mk sẽ sửa lại chứ đừng vô cớ k sai nhé , thanks nhìu......