K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x-5\)

\(=\left(\sqrt{x}\right)^2-\left(\sqrt{5}\right)^2\)

\(=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)

\(5-7x^2=\left(\sqrt{5}\right)^2-\left(x\sqrt{7}\right)^2\)

\(=\left(\sqrt{5}-x\sqrt{7}\right)\left(\sqrt{5}+x\sqrt{7}\right)\)

\(3+4x=\left(\sqrt{3}\right)^2-\left(2\sqrt{x}\right)^2\) ( do x<0 )

\(=\left(\sqrt{3}-2\sqrt{x}\right)\left(3+2\sqrt{x}\right)\)

20 tháng 6 2017

|x|^2 - 2|x|+1 -2 =(|x|-1)^2 - (( căn 2))^2 HĐT a^2 -b^2 sẽ ra 

12 tháng 12 2023

a: \(x^2+12x+36=0\) 

=>\(x^2+2\cdot x\cdot6+6^2=0\)

=>\(\left(x+6\right)^2=0\)

=>x+6=0

=>x=-6

b: \(4x^2-4x+1=0\)

=>\(\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\)

=>\(\left(2x-1\right)^2=0\)

=>2x-1=0

=>2x=1

=>x=1/2

c: \(x^3+6x^2+12x+8=0\)

=>\(x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=0\)

=>\(\left(x+2\right)^3=0\)

=>x+2=0

=>x=-2

6 tháng 11 2021

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

4 tháng 11 2017

pt <=> (x^3-x^2) - (3x^2-3x) +(2x-2) = 0

<=> (x-1).(x^2-3x+2) = 0

<=>(x-1).[(x^2-x) - (2x-2)] = 0

<=> (x-1)^2 . (x-2) = 0

<=> x-1 = 0 hoặc x-2 = 0

<=> x=1 hoặc x=2

tích mình đi

ai tích mình

mình tích lại

thanks

9 tháng 8 2016

\(\left(x+5\right)\left(x-5\right)-\left(x-2\right)\left(x+7\right)=0\)

\(\left(x^2-5^2\right)-\left(x^2+7x-2x-14\right)=0\)

\(x^2-25-x^2-7x+2x+14=0\)

\(-5x=25-14\)

\(-5x=11\)

\(x=-\frac{11}{5}\)

***

\(9x^2-4-2\left(3x-2\right)^2=0\)

\(\left(3x\right)^2-2^2-2\left(3x-2\right)^2=0\)

\(\left(3x-2\right)\left(3x+2\right)-2\left(3x-2\right)^2=0\)

\(\left(3x-2\right)\left[\left(3x+2\right)-2\left(3x-2\right)\right]=0\)

\(\left(3x-2\right)\left(3x+2-6x+4\right)=0\)

\(\left(3x-2\right)\left(6-3x\right)=0\)

TH1:

\(3x-2=0\)

\(3x=2\)

\(x=\frac{2}{3}\)

TH2:

\(6-3x=0\)

\(3x=6\)

\(x=\frac{6}{3}\)

\(x=2\)

Vậy \(x=\frac{2}{3}\) hoặc \(x=2\)

***

\(12\left(3-4x\right)+7\left(4x-3\right)=0\)

\(12\left(3-4x\right)-7\left(3-4x\right)=0\)

\(\left(3-4x\right)\left(12-7\right)=0\)

\(5\left(3-4x\right)=0\)

\(3-4x=0\)

\(4x=3\)

\(x=\frac{3}{4}\)

***

\(x^2-4-2xy+y^2=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)

***

\(x^3-4x^2-12x+27=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)=\left(x+3\right)\left(x^2-3x+9-4x\right)=\left(x+3\right)\left(x^2-7x+9\right)\)

***

\(3x^2-18x+27=3\left(x^2-2\times x\times3+3^2\right)=3\left(x-3\right)^2\)

***

\(A=-x^2+3x-4=-\left(x^2-2\times x\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+4\right)=-\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]\)

\(\left(x-\frac{3}{2}\right)^2\ge0\)

\(\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

\(-\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]\le-\frac{7}{4}< 0\)

Vậy A < 0 với mọi x (đpcm)

9 tháng 8 2016

1a (x+5)(x-5)-(x-2)(x+7) = 0

    => x2-25-(x2+5x-14) = 0

    => x2-25-x2-5x+14 = 0

    => -11-5x = 0

    => -5x     = -11-0

    => -5x     = -11

    => x        = -11:5

    => x        = \(\frac{-11}{5}\)

bài 2:

 1) (x-y)2-4

  3) 3(x2-6x+9)

22 tháng 4 2021

vì để dễ tính hơn nha

22 tháng 4 2021

((: Dễ tính hơn ấy ạ:")?