K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

\(B=x^2-x+2=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{7}{4}=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Vậy \(B_{min}=\frac{7}{4}\)\(\Leftrightarrow x=\frac{1}{2}\)

15 tháng 7 2019

\(A=2x^2-3x+6=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}+\frac{39}{16}\right)\)

\(=2\left[\left(x-\frac{3}{4}\right)^2+\frac{39}{16}\right]\ge\frac{39}{8}\)

Vậy \(A_{min}=\frac{39}{8}\Leftrightarrow x=\frac{3}{4}\)

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

a) Ta có: \(A=x^2-3x+5\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)

b: Ta có: \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\(=4x^2-4x+1+x^2+4x+4\)

\(=5x^2+5\ge5\forall x\)

Dấu '=' xảy ra khi x=0

5 tháng 3 2020

dễ mak bn!

2.x - 6 +7= A

2x - 13 = A

2x = A + 13

Suy ra A + 13 chia hết cho 2

Suy ra giá trị nhỏ nhất của A là 1 vì 1 +13 chia hết cho 2

Vậy giá trị hỏ nhất của A là 1.

k mik nha bn ^-^

5 tháng 3 2020

k mik nha

4 tháng 8 2023

a) \(M=x^2-3x+10\)

\(M=x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}+\dfrac{31}{4}\)

\(M=\left(x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}\right)+\dfrac{31}{4}\)

\(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\)

Mà: \(\left(x-\dfrac{3}{2}\right)^2\ge0\) nên: \(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

Dấu "=" xảy ra 

\(\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}=\dfrac{31}{4}\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

Vậy: \(M_{min}=\dfrac{31}{4}\) với \(x=\dfrac{3}{2}\)

b) \(N=2x^2+5y^2+4xy+8x-4y-100\)

\(N=x^2+x^2+4y^2+y^2+4xy+8x-4y-120+16+4\)

\(N=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)

\(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)

Mà:

\(\left\{{}\begin{matrix}\left(x+2y\right)^2\ge0\\\left(x+4\right)^2\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\) nên \(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge120\)

Dấu "=" xảy ra:

\(\left\{{}\begin{matrix}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4+2y=0\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Vậy: \(N_{min}=120\) khi \(\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

4 tháng 8 2023

a

\(M=x^2-3x+10=x^2-2.\dfrac{3}{2}.x+\dfrac{9}{4}+\dfrac{31}{4}\\ =\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

Min M \(=\dfrac{31}{4}\) khi và chỉ khi \(x=\dfrac{3}{2}\)

23 tháng 10 2021

\(a,=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)

\(b,=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(c,=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)

23 tháng 10 2021

a) \(A=2x^2-15\ge-15\forall x\)

\(minA=-15\Leftrightarrow x=0\)

b) \(B=2\left(x+1\right)^2-17\ge-17\forall x\)

\(minB=-17\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

23 tháng 10 2021

? min

Đề bài yêu cầu gì vậy bạn?

28 tháng 3 2021

rồi đó bạn.

 

15 tháng 10 2023

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

15 tháng 10 2023

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

5 tháng 7 2019

\(A=3x^2-12x+16=3\left(x^2-4x\right)+16\)

\(=3\left(x^2-4x+4-4\right)+16\)

\(=3\left(x^2-4x+4\right)-3.4+16\)

\(=3\left(x-2\right)^2+4\ge4\), với mọi x

Vì \(\left(x-2\right)^2\ge0\) với mọi x

nên \(A=3\left(x-2\right)^2+4\ge3.0+4=4\) với mọi x

dấu "=" xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy giá tri nhỏ nhất của A là 4 tại x=2

27 tháng 7 2021

nhanh giùm mình được không

 

Bài 1: 

a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)

\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)