K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(4x^4-10x^3+8x^2-5x-1=0\)

\(\left(x^4-x^3+2x^2\right)-\left(4x^3-4x^2+8x\right)+\left(2x^2-2x+4\right)=0\)

\(x^2\left(x^2-x+2\right)-4x\left(x^2-x+2\right)+2\left(x^2-x+2\right)=0\)

\(\left(x^2-x+2\right)\left(x^2-4x+2\right)=0\)

\(\left[\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\right]\left(x^2-4x+2\right)=0\)

Vì \(\left[\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\right]>0\)\(\Rightarrow x^2-4x+2=0\)

\(\Rightarrow\left(x-2\right)^2=2\)\(\Rightarrow x-2=\pm\sqrt{2}\)

\(\Rightarrow\orbr{\begin{cases}x=\sqrt{2}+2\\x=2-\sqrt{2}\end{cases}}\)

29 tháng 8 2021

\(a,x^4-2x^3+5x^2-10x=0\\ \Leftrightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Leftrightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x^2+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x\in\varnothing\left(x^2+5>0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(b,\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Leftrightarrow\left(3x+5\right)^2-\left(2x-2\right)^2=0\\ \Leftrightarrow\left(3x+5+2x-2\right)\left(3x+5-2x+2\right)=0\\ \Leftrightarrow\left(5x+3\right)\left(x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-7\end{matrix}\right.\)

\(c,x^3-2x^2+x=0\\ \Leftrightarrow x\left(x-1\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

\(d,x^2\left(x-1\right)-4x^2+8x-4=0\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

29 tháng 8 2021

a) \(x^4-2x^3+5x^2-10x=0\\ \Rightarrow\left(x^4-2x^3\right)+\left(5x^2-10x\right)=0\\ \Rightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Rightarrow\left(x^3+5x\right)\left(x-2\right)=0\\ \Rightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2+5=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\\x=2\end{matrix}\right.\)

Vậy \(x=\left\{-\sqrt{5};0;\sqrt{5};2\right\}\)

b) \(\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Rightarrow\left[{}\begin{matrix}3x+5=2x-2\\3x+5=-2x+2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\)

c) \(x^3-2x^2+x=0\\ \Rightarrow x\left(x^2-2x+1\right)=0\\ \Rightarrow x\left(x-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

vậy ...

 

d) \(x^2\left(x-1\right)-4x^2+8x-4=0\\ x^2\left(x-1\right)-\left(4x^2-8x+4\right)=0\\ x^2\left(x-1\right)-\left(2x-2\right)^2=0\\ \Rightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Rightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\\ \Rightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Rightarrow\left(x-1\right)\left(x-2\right)^2=0\)

    \(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2: Ta có: \(x^4-4x^3-9x^2+8x+4=0\)

\(\Leftrightarrow x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0\)

\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-12x\left(x-1\right)-4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-12x-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2-5x^2-10x-2x-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-5x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-5x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x^2-5x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{5-\sqrt{33}}{2}\\x=\dfrac{5+\sqrt{33}}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{1;-2;\dfrac{5-\sqrt{33}}{2};\dfrac{5+\sqrt{33}}{2}\right\}\)

1: Ta có: \(x^4+5x^3+10x^2+15x+9=0\)

\(\Leftrightarrow x^4+x^3+4x^3+4x^2+6x^2+6x+9x+9=0\)

\(\Leftrightarrow x^3\left(x+1\right)+4x^2\left(x+1\right)+6x\left(x+1\right)+9\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+4x^2+6x+9\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^3+3x^2+x^2+6x+9\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x+3\right)+\left(x+3\right)^2\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x^2+x+3\right)=0\)

mà \(x^2+x+3>0\forall x\)

nên (x+1)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Vậy: S={-1;-3}

14 tháng 2 2022

bạn viết rõ đề câu a;b nhé 

c, \(2x\left(x-5\right)-\left(x-5\right)=0\Leftrightarrow\left(2x-1\right)\left(x-5\right)=0\Leftrightarrow x=\dfrac{1}{2};x=5\)

d, \(\left(x+3\right)\left(x+3-5+x\right)=0\Leftrightarrow\left(x+3\right)\left(2x-2\right)=0\Leftrightarrow x=-3;x=1\)

e, \(\left(x+2\right)\left(3-4x\right)=\left(x+2\right)^2\Leftrightarrow\left(x+2\right)\left(3-4x-x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(-5x+1\right)=0\Leftrightarrow x=-2;x=\dfrac{1}{5}\)

cảm ơn bạn ạ mình đang bị cấn mấy câu đó

 

`@` `\text {Ans}`

`\downarrow`

`a)`

`3x(4x-1) - 2x(6x-3) = 30`

`=> 12x^2 - 3x - 12x^2 + 6x = 30`

`=> 3x = 30`

`=> x = 30 \div 3`

`=> x=10`

Vậy, `x=10`

`b)`

`2x(3-2x) + 2x(2x-1) = 15`

`=> 6x- 4x^2 + 4x^2 - 2x = 15`

`=> 4x = 15`

`=> x = 15/4`

Vậy, `x=15/4`

`c)`

`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`

`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`

`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`

`=> 40x^2 -17x - 1 = 1`

`d)`

`(x+2)(x+2)-(x-3)(x+1)=9`

`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`

`=> 6x + 7 =9`

`=> 6x = 2`

`=> x=2/6 =1/3`

Vậy, `x=1/3`

`e)`

`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`

`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`

`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`

`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`

`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`

`=> 12x +8 = 0`

`=> 12x = -8`

`=> x= -8/12 = -2/3`

Vậy, `x=-2/3`

`g)`

`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`

`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`

`=> -3x + 4 =14`

`=> -3x = 10`

`=> x= - 10/3`

Vậy, `x=-10/3`

16 tháng 6 2023

Hello các bạn còn đó ko?

12 tháng 1 2017

làm tạm câu này vậy

a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)

\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)

\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)

\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)

\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)

\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)

Vậy...

12 tháng 1 2017

chuẩn

5 tháng 7 2019

mk nghĩ đề đúng của câu a phải là \(8x^2\left(2x-3\right)-4x\left(4x^2-6x+1\right)+4\left(x-3\right)\)

nhân tung ra rồi rút gọn lại là xong kết quả của phép tính là \(-12\)không chứa ẩn x nên bt trên ko phụ thuộc vào biến

bài b tương tự

\(\frac{1}{2}x\left(10x^3-8x^2+4x-2\right)-5x\left(x^3-\frac{4}{5}x^2+\frac{2}{5}x-\frac{1}{5}\right)+7\)

\(=5x^4-4x^3+2x^2-x-5x^4+4x^3-2x^2+x+7\)

\(=7\)

Vậy bt trên ko phụ thuộc vào biến.

Làm hơi tắt tí thông cảm nha!

23 tháng 11 2022

a: =>(x^2+4x-5)(x^2+4x-21)=297

=>(x^2+4x)^2-26(x^2+4x)+105-297=0

=>x^2+4x=32 hoặc x^2+4x=-6(loại)

=>x^2+4x-32=0

=>(x+8)(x-4)=0

=>x=4 hoặc x=-8

b: =>(x^2-x-3)(x^2+x-4)=0

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)

c: =>(x-1)(x+2)(x^2-6x-2)=0

hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)

13 tháng 1 2019

Các bn giúp mình với mình đang cần gấp

14 tháng 1 2019

nhiều quá bạn ơi , mk nghĩ bạn nên tách ra rồi hãy đăng lên

30 tháng 7 2023

1) \(4x^5y^2-8x^4y^2+4x^3y^2\)

\(=4x^3y^2\left(x^2-2x+1\right)\)

\(=4x^3y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)

\(=4x^3y^2\left(x-1\right)^2\)

2) \(5x^4y^2-10x^3y^2+5x^2y^2\)

\(=5x^2y^2\left(x^2-2x+1\right)\)

\(=5x^2y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)

\(=5x^2y^2\left(x-1\right)^2\)

3) \(12x^2-12xy+3y^2\)

\(=3\left(4x^2-4xy+y^2\right)\)

\(=3\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)

\(=3\left(2x-y\right)^2\)

4) \(8x^3-8x^2y+2xy^2\)

\(=2x\left(4x^2-4xy+y^2\right)\)

\(=2x\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)

\(=2x\left(2x-y\right)^2\)

5) \(20x^4y^2-20x^3y^3+5x^2y^4\)

\(=5x^2y^2\left(4x^2-4xy+y^2\right)\)

\(=5x^2y^2\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)

\(=5x^2y^2\left(2x-y\right)^2\)

1: 4x^5y^2-8x^4y^2+4x^3y^2

=4x^3y^2(x^2-2x+1)

=4x^3y^2(x-1)^2

2: \(=5x^2y^2\left(x^2-2x+1\right)=5x^2y^2\left(x-1\right)^2\)

3: \(=3\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)^2\)

4: \(=2x\left(4x^2-4xy+y^2\right)=2x\left(2x-y\right)^2\)

5: \(=5x^2y^2\left(4x^2-4xy+y^2\right)=5x^2y^2\left(2x-y\right)^2\)