K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6: =x^2-7xy+5xy-35y^2

=x(x-7y)+5y(x-7y)

=(x-7y)(x+5y)

7: =x^2-2xy-8xy+16y^2

=x(x-2y)-8y(x-2y)

=(x-2y)(x-8y)

8: =3x^2-6xy-4xy+8y^2

=3x(x-2y)-4y(x-2y)

=(x-2y)(3x-4y)

9: =4x^2+4xy+y^2-16y^2

=(2x+y)^2-16y^2

=(2x+y-4y)(2x+y+4y)

=(2x-3y)*(2x+5y)

10: =2(x^2+5xy+4y^2)

=2(x+y)(x+4y)

11: =5x(x+2y+y^2)

 

3 tháng 7 2019

\(2x^2+10xy+14y^2+2x+2y+2=0\)

\(\Leftrightarrow\left(x^2+4y^2+1+2x+4xy+4y\right)+\left(x^2+6xy+9y^2\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(x+2y+1\right)^2+\left(x+3y\right)^2+\left(y-1\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+2y+1\right)^2\ge0;\forall x,y\\\left(x+3y\right)^2\ge0;\forall x,y\\\left(y-1\right)^2\ge0;\forall x,y\end{cases}}\)

\(\Rightarrow\left(x+2y+1\right)^2+\left(x+3y\right)^2+\left(y-1\right)^2\ge0;\forall x,y\)

Do đó :\(\left(x+2y+1\right)^2+\left(x+3y\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+2y+1\right)^2=0\\\left(x+3y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1\\x=-3\\y=1\end{cases}}\)

Vậy x=-3 và y=1 

Kiến thức bổ sung 

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca\)

3 tháng 7 2019

\(\Leftrightarrow4x^2+20xy+28y^2+4x+4y+4=0\)

\(\Leftrightarrow\left(4x^2+4x+20xy+25y^2+10y+1\right)+\left(3y^2-6y+3\right)=0\)

\(\Leftrightarrow\left(2x+5y+1\right)^2+3\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x+5y+1=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

8 tháng 8 2015

a) <M = -4x^2 + 6xy - y^2 - (5x^2 - 2xy)

          = -4x^2 + 6xy - y^2 - 5x^2 + 2xy

           = -9x^2  +8xy - y^2 

b) M = (24xy^2 - 13x^2y -+2x^3 ) - (10xy^2 + 2x^2 + 3 )

           = 24xy^2 - 13x^2y + 2x^3 - 10xy^2 - 2x^2 - 3

         = 14xy^2 - 13x^2y + 2x^3 - 2x^2-3 

26 tháng 3 2018

\(G=x^2-2xy+2y^2+2x-10y+17\\ \\ =x^2-2xy+y^2+y^2+2x-2y-8y+1+16\\ \\ =\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)\\ \\ =\left(x-y+1\right)^2+\left(y-4\right)^2\)

Do \(\left(x-y+1\right)^2\ge0\forall x;y\)

\(\left(y-4\right)^2\ge0\forall y\)

\(\Rightarrow G=\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\forall x;y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Vậy \(G_{\left(Min\right)}=0\) khi \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

26 tháng 3 2018

\(H=x^2+2xy+y^2-2x-2y\\ =x^2+2xy+y^2-2x-2y+1-1\\ =\left(x^2+y^2+1+2xy-2x-2y\right)-1\\ \\ =\left(x+y-1\right)^2-1\)

Do \(\left(x+y-1\right)^2\ge0\forall x;y\)

\(\Rightarrow H=\left(x+y-1\right)^2-1\ge-1\forall x;y\)

Dấu \("="\) xảy ra khi:

\(\left(x+y-1\right)^2=0\\ \Leftrightarrow x+y-1=0\\ \Leftrightarrow x+y=1\)

Vậy \(H_{\left(Min\right)}=-1\) khi \(x+y=1\)

24 tháng 2 2018

\(AB=\left(x^3-2x^2y+5xy^2-y^2\right)\left(x+2y\right)\)

\(=x^4+2x^3y-2x^3y-4x^2y^2+5x^2y^2+10xy^3-xy^2-2y^3\)

\(=x^4+x^2y^2+10xy^3-xy^2-2y^3\)

\(C=10xy^3-xy^2-2y^3\)

Vậy \(AB-C=x^4+x^2y^2\)

a: \(=\dfrac{2xy\left(2x^2y-4x+5\right)}{2xy}=2x^2y-4x+5\)

b: \(=\dfrac{x^2y\left(7x^2y-2y-5x^2y^3\right)}{3x^2y}=\dfrac{7}{3}x^2y-\dfrac{2}{3}y-\dfrac{5}{3}x^2y^3\)