(x+1)+(x+2)+(x+3)+(x+4)+.....+(x+99)+(x+100)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot3\cdot4+...+3\cdot99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\\ 3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+....+99\cdot100\cdot101-98\cdot99\cdot100\\ 3S=99\cdot100\cdot101\\ S=\dfrac{99\cdot100\cdot101}{3}=33\cdot100\cdot101=3300\cdot101=333300\)
A=100/1 x 2 + 100/2 x 3 + 100/3 x 4 +...+100/99 x 100
A/100=1/1 x 2 + 1/2 x 3 + 1/3 x 4 +...+1/99 x 100
A/100=2-1/1x2 + 3-2/2x3 + ... + 100-99/99x100
A/100=1-1/2 + 1/2-1/3+...+1/99-1/100
A/100=1-1/100
A/100=99/100
A=99/100x100=99
Vậy A=99.
Ta có:
\(\frac{100}{1.2}+\frac{100}{2.3}+\frac{100}{3.4}+...+\frac{100}{99.100}\)
\(\Rightarrow100.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow100.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow100.\left(\frac{1}{1}-\frac{1}{100}\right)\Leftrightarrow100.\frac{99}{100}=99\)
=0:{2+4+6+...98}=0
=[1+3+5+7+...97+99]x[45x3-45x3]
=[----------------------------]x0=0
Dấu gạch trên là gì đấy?
a, [ 0 x 1 x 2 x 3 ...x 99 x 100] : [2 + 4 + 6 + ... 98]
Vì có chữ số 0 mà 0 nhân số nào cũng bằng 0
=> 0 : ( 2 + 4 + 6 + ... 98 )
Vì số nào chia 0 cũng bằng 0
=> 0 : ( 2 + 4 + 6 +.. + 98 ) = 0
b, Đặt A = 1 + 3 + 5 + 7 + ... + 97 + 99 )
Đặt B = 45x 3 - 45 x 2 - 45
B = 45 x 3 - 45 x 2 - 45
B = 45 x 3 - 45 x 2 - 45 x 1
B = 45 x ( 3 - 2 - 1 )
B = 45 x 0
B = 0
Vì 0 nhân số nào cũng = 0
=> ( 1 + 3 + 5 + 7 + ... + 97 +99 ) x 0 = 0
c, Bạn chỉ cần biến đổi tử số hoặc mẫu số giống nhau thì kết quả sẽ = 1 nha
a) Số số hạng: \(\frac{\left(99-1\right)}{1}+1=99\)
Tổng: \(\frac{99+1}{2}\cdot99=4950\)
b) Số số hạng: \(\frac{\left(100-2\right)}{2}+1=50\)
Tổng: \(\frac{100+2}{2}\cdot50=2550\)
c) \(S=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(3\cdot S=1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+3\cdot4\left(5-2\right)+...+99\cdot100\left(101-98\right)\)
\(3\cdot S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+99\cdot100\cdot101-98\cdot99\cdot100\)
\(3\cdot S=99\cdot100\cdot101\)
Vậy, \(S=\frac{1}{3}\cdot99\cdot100\cdot101=333300\)
\(100\times2:1\times3:2\times4:3\times5:4\times...\times100:99\)
\(=100\times\frac{2}{1}\times\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times...\times\frac{100}{99}\)
\(=100\times\frac{100}{1}\)
\(=10000\)
Chúc bạn học tốt !!!
100 x 2 : 1 x 3 : 2 x 4 : 3 x ... x 100 : 99
= 100 x 2/1 x 3/2 x 4/3 x ... x 100/99
= 100 x 100/1
= 100 x 100
= 10000
Đặt A = 1 . 2 . 3 + 2 . 3 . 4 + ... + 98 . 99 . 100
\(\Rightarrow\) 4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . (5 - 1) +...+ 98 . 99 . 100 . (101 - 97)
\(\Rightarrow\) 4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 5 - 2 . 3 . 4 . 1 + ... + 98 . 99 . 100 . 101 - 98 . 99 . 100 . 97
\(\Rightarrow\) 4A = 98 . 99 . 100 . 101
\(\Rightarrow\) 4A = 97990200
\(\Rightarrow\) A = 24497550
Đặt A = 1 . 2 . 3 + 2 . 3 . 4 + ... + 98 . 99 . 100
=>4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . (5 - 1) +...+ 98 . 99 . 100 . (101 - 97)
=>4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 5 - 2 . 3 . 4 . 1 + ... + 98 . 99 . 100 . 101 - 98 . 99 . 100 . 97
=>4A = 98 . 99 . 100 . 101 4A = 97990200
=>A = 24497550
Vậy A= 24497550
hỗ trợ mình các bạn ơi
Đề bài kêu tìm x hả bn