Cho x+y=2,5 và xy=1
Tính giá trị biểu thức sau :
A= x/y + y/x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$xy+\sqrt{(1+x^2)(1+y^2)}=1$
$\Leftrightarrow \sqrt{(1+x^2)(1+y^2)}=1-xy$
$\Rightarrow (1+x^2)(1+y^2)=(1-xy)^2$ (bp 2 vế)
$\Leftrightarrow x^2+y^2=-2xy$
$\Leftrightarrow (x+y)^2=0\Leftrightarrow x=-y$.
Khi đó:
$M=(x+\sqrt{1+(-x)^2})(-x+\sqrt{1+x^2})=(\sqrt{1+x^2}+x)(\sqrt{1+x^2}-x)$
$=1+x^2-x^2=1$
Lời giải:
Đặt $xy=a; x+y=b$ thì theo đề ta có:
$a+b=-1$ và $ab=-12$
Ta cần tính: $A=(x+y)^3-3xy(x+y)=b^3-3ab=b^3-3(-12)=b^3+36$
Từ $a+b=-1\Rightarrow a=-b-1$. Thay vào $ab=-12$
$\Rightarrow (-b-1)b=-12$
$\Leftrightarrow (b+1)b=12$
$\Leftrightarrow b^2+b-12=0$
$\Leftrightarrow (b-3)(b+4)=0$
$\Leftrightarrow b=3$ hoặc $b=-4$
Nếu $b=3$ thì $A=3^3+36=63$
Nếu $b=-4$ thì $A=(-4)^3+36=-28$
bbgfhfygfdsdty64562gdfhgvfhgfhhhhh
\hvhhhggybhbghhguyg
\(A=x^2+y^2+xy=\left(x+y\right)^2-2xy+xy\\ A=1-xy\)
Mà \(x+y=1\Leftrightarrow x=1-y\)
\(\Leftrightarrow A=1-\left(1-y\right)y=1-y+y^2=\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ A=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\\ A_{min}=\dfrac{3}{4}\Leftrightarrow x=y=\dfrac{1}{2}\)
Ta có: \(x+y=2,5=\frac{5}{2}\)
\(\Rightarrow\left(x+y\right)^2=\frac{25}{4}\)
Ta có:
\(A=\frac{x}{y}+\frac{y}{x}\)
\(=\frac{x.x}{x.y}+\frac{y.y}{y.x}\)
\(=\frac{x^2}{xy}+\frac{y^2}{xy}\)
\(=\frac{x^2+y^2}{xy}\)
\(=\frac{\frac{25}{4}}{1}=\frac{25}{4}\)
x=25/4