một số tự nhiên chia cho 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4 và chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số tự nhiên đó là a theo đề ra, ta có: a chia 3 dư 1
=>(a-1) chia hết cho3
=>(a+2) chia hết cho 3 a chia 4 dư 2
=>(a-2) chia hết cho4
=>(a+2) chia hết cho 4 a chia 5 dư 3
=>(a-3) chia hết cho5
=>(a+2) chia hết cho 5 a chia 6 dư 4
=>(a-4) chia hết cho6
=>(a+2) chia hết cho 6
=>(a+2) thuộc BC(3;4;5;6) BCNN(3;4;5;6)=60 BC(3;4;5;6)=B(60)={0;60;120;180;240;300;360;420;...}
=>(a+2)={0;60;120;180;240;300;360;420;...}
=>a={-2;58;118;178;238;298;358;418;...}
vì a là số tự nhiên nhỏ nhất và a chia hết cho 11
=>a chỉ có thể là 418
Gọi số cần tìm là a ,ta có:
a chia 3 dư 1 ; 4 dư 2 ; 5 dư 3 ; 6 dư 4
Nên a + 2 chia hết cho 3;4;5;6
a+ 2 \(\in\) BC(3;4;5;6)
Ta có: 3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 2.3
=> BCNN(3;4;5;6) = 22.3.5 = 60
a + 2 \(\in\)B(60) = {0;60 ; 120 ; 180 ; 240 ; 300 ; ....}
Nên a \(\in\) {58 ; 118 ; 178 ; 238 ; 298 ; 358 ; 418 ; 478 ; 538 ; 598 ; 658 ; ....}
Mà a là số tự nhiên nhỏ nhất và a chia hết cho 13 nên a = 598
Gọi số cần tìm là a, ta có:
a+2 sẽ chia hết cho cả 3, 4 và 5.
BSCNN của 3,4,5 là: 3.4.5=60
=> a= 60n-2 =2(30n-1) (với n là số tự nhiên)
Mà a chia hết cho 13 nên 30n-1 chia hết cho 13
Giá trị nhỏ nhất của a thỏa mãn khi n=10
=> a=2(300-1)=598
Đs: 598
Gọi số cần tìm là a, ta có:
a+2 sẽ chia hết cho cả 3, 4 và 5.
BSCNN của 3,4,5 là: 3.4.5=60
=> a= 60n-2 =2(30n-1) (với n là số tự nhiên)
Mà a chia hết cho 13 nên 30n-1 chia hết cho 13
Giá trị nhỏ nhất của a thỏa mãn khi n=10
=> a=2(300-1)=598
Đs: 598