Chứng minh với mọi stn n thì (n+3)^3 - (n-3)^3 chia hết 18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2
Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2
Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2
Bài 4 bạn ghi thiếu đề
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
ta có: M=n^3+3n^2+2n=2n(n+1)+n^2(n+1)=n(n+1)(n+2)
ta thấy n(n+1)(n+2) là tích của 3 số nguyên liên tiếp
=>tồn tại 1 số chia hết cho 2(vì n(n+1) là tích 2 số nguyên liên tiếp) (với n thuộc Z)
tồn tại 1 số chia hết cho 3( vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp)
=>n(n+1)(n+2) chia hết cho 2.3(vì (2;3)=1)
=>n(n+1)(n+2) chia hết cho 6
=>n^3+3n^2+2n chia hết cho 6
có chỗ nào ko hiểu thì hỏi mk nhé
Vì n là số tự nhiên không chia hết cho 2 hay 3 nên n có dạng \(6k+1\) hoặc \(6k+5\).
Nếu \(n=6k+1\) thì hiển nhiên \(n^2-1⋮6\) và \(3n=18k+3\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.
Nếu \(n=6k+5\) thì \(n^2-1⋮6\) (cái này dễ cm nên mình không trình bày ở đây) và \(3n=18k+15\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.
Ta có đpcm.
Giả sử n2 và n là số lẻ
Ta có n2 = n.n
Vì n lẻ nên n.n là số lẻ
=> n2 lẻ (trái giả thiết)
Vậy n2 lẻ thì n lẻ
bài còn lại làm tương tự
1/ Giả sử \(n^2\) là số lẻ nhưng n là một số chẵn.
Khi đó, n = 2k (k thuộc N*)
Ta có : \(n^2=\left(2k\right)^2=4k^2\) luôn là một số chẵn, vậy trái với giả thiết.
Vậy điều phản chứng sai. Ta có đpcm
2/ Tương tự.
a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
b) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
c) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
Có :\(\left(n+3\right)^3-\left(n-3\right)^3\)
\(=\left[\left(n+3\right)-\left(n-3\right)\right]\left[\left(n+3\right)^2+\left(n+3\right)\left(n-3\right)+\left(n-3\right)^2\right]\)
\(=6\left(3n^2+9\right)==18\left(n^2+3\right)\) chia hết 18 (DPCM)
Ta có:\(\left(n+3\right)^3-\left(n-3\right)^3\)
\(=\left[\left(n+3\right)-\left(n-3\right)\right]\left[\left(n+3\right)^2+\left(n+3\right)\left(n-3\right)+\left(n-3\right)^2\right]\)
\(=\left(n+3-n+3\right)\left(n^2+6n+9+n^2-9+n^2-6n+9\right)\)
\(=6.\left(3n^2+9\right)\)
\(=6.3.\left(n^2+3\right)\)
\(=18.\left(n^2+3\right)⋮18\)
Vậy \(\left(n+3\right)^3-\left(n-3\right)^3⋮18\)