Rút gọn:
A=\(\frac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4+x+2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với `x >= 0,x ne 1` có:
`A=[10\sqrt{x}]/[(\sqrt{x}-1)(\sqrt{x}+4)]-[2\sqrt{x}-3]/[\sqrt{x}+4]-[\sqrt{x}+1]/[\sqrt{x}-1]`
`A=[10\sqrt{x}-(2\sqrt{x}-3)(\sqrt{x}-1)-(\sqrt{x}+1)(\sqrt{x}+4)]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[10\sqrt{x}-2x+2\sqrt{x}+3\sqrt{x}-3-x-4\sqrt{x}-\sqrt{x}-4]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[-3x+10\sqrt{x}-7]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[(\sqrt{x}-1)(-3\sqrt{x}-7)]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[-3\sqrt{x}-7]/[\sqrt{x}+4]`
a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
c) \(x-4+\sqrt{16-8x+x^2}=x-4+\sqrt{\left(x-4\right)^2}=x-4+\left|x-4\right|\)
\(=x-4+x-4\left(x>4\right)=2x-8\)
d) \(\dfrac{x^2-5}{x+\sqrt{5}}=\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)
e) \(\dfrac{x^2+2\sqrt{2}x+2}{x+\sqrt{2}}=\dfrac{\left(x+\sqrt{2}\right)^2}{x+\sqrt{2}}=x+\sqrt{2}\)
g) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{1}{\sqrt{2}}\)
\(A=x-4-\sqrt{x^4-8x^2+16}=x-4-\sqrt{[\left(x-2\right)\left(x+2\right)]^2}\)
\(A=x-4-\left(x-2\right)\left(x+2\right)=x-4-\left(x^2-4\right)=-x^2+x\)
\(B=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)=a-b\)
\(A=\dfrac{3x}{x-2}\cdot\sqrt{x^2-4x+4}\)
\(=\dfrac{3x}{x-2}\cdot\left(x-2\right)\)
=3x
\(B=\dfrac{-5y}{x+3}\cdot\sqrt{x^2+6x+9}\)
\(=\dfrac{-5y}{x+3}\cdot\left|x+3\right|\)
\(=\pm5y\)
2:
a: =căn 17-4-căn 17=-4
b: =5-2căn 3-2căn 3=5-4căn 3
1:
a: =>|x+1|=-x
=>x<=0 và (x+1)^2=x^2
=>x<=0 và (x+1+x)(x+1-x)=0
=>x=-1/2
\(1,\\ a,ĐK:11-2x\ge0\Leftrightarrow x\le\dfrac{11}{2}\\ b,ĐK:9x-18\ge0\Leftrightarrow x\ge2\\ c,ĐK:x\ne0;\dfrac{3}{x^2}\ge0\left(luôn.đúng.do.3>0;x^2>0\right)\Leftrightarrow x\in R\backslash\left\{0\right\}\\ d,ĐK:\dfrac{5}{x-7}\ge0\Leftrightarrow x-7>0\left(5>0;x-7\ne0\right)\Leftrightarrow x>7\\ 2,\\ a,=\left|4x\right|-2x^2=4x-2x^2\\ b,bạn.thiếu.điều.kiện.nhé\\ c,=\left|x-5\right|-4x=5-x-4x=5-5x\)
\(M=\dfrac{x-3\sqrt{x}+2+x+3\sqrt{x}+2-2x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2\sqrt{x}-2}{3\sqrt{x}-6}\)
\(=\dfrac{2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2\left(\sqrt{x}-1\right)}{3\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\left(\sqrt{x}-1\right)}{3\left(\sqrt{x}-2\right)^2}\)