Cho a,b,c dương. Chứng minh rằng (a+b+c)(1/a+1/b+1/c ) >=9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a)Xét a2 + 5 - 4a =a2 - 4a + 4+1=(a - 2)2+1\(\ge\)1 hay (a -2)2 + 1 > 0
\(\Rightarrow\)Đpcm
b)Xét 3(a2 + b2 + c2) -(a + b +c)2 =3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2ac - 2bc
=2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc
=(a - b)2 + (a - c)2 + (b - c)2\(\ge\)0 (với mọi a,b,c)
\(\Rightarrow\)Đpcm
2)Xét A=\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+c+b\right)=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)
áp dụng cô-sy
\(\Rightarrow\)A\(\ge\)9
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Bài 6 . Áp dụng BĐT Cauchy , ta có :
a2 + b2 ≥ 2ab ( a > 0 ; b > 0)
⇔ ( a + b)2 ≥ 4ab
⇔ \(\dfrac{\left(a+b\right)^2}{4}\)≥ ab
⇔ \(\dfrac{a+b}{4}\) ≥ \(\dfrac{ab}{a+b}\) ( 1 )
CMTT , ta cũng được : \(\dfrac{b+c}{4}\) ≥ \(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ac}{a+c}\)( 3)
Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :
\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
⇔ \(\dfrac{a+b+c}{2}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
Bài 4.
Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :
\(1+\dfrac{a}{b}\) ≥ \(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)
\(1+\dfrac{b}{c}\) ≥ \(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)
\(1+\dfrac{c}{a}\) ≥ \(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)
Nhân từng vế của ( 1 ; 2 ; 3) , ta được :
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\) ≥ \(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)
áp dụng bất đẳng thức AM-GM ta có:
1/a+1/b+1/c>=9/(a+b+c)
=> 1/a+1/b+1/c>=9/1
=> 1/a+1/b+1/c>=9
(a+b+c)(1/a+1/b+1/c) = 1+ a/b + a/c + b/a + 1 + b/c + c/a + c/b + 1
= 3 + (a/b+b/a) + (c/a+a/c) + (b/c+c/b) (1)
(ở đây mình sẽ chứng minh a/b + b/a >=2)
có: a/b + b/a - 2 = (a^2 + b^2 - 2ab)/ab = ((a-b)^2)/ab
có: (a-b)^2 >= 0; a,b đều là các số dương => a.b >= 0
vậy a/b + b/a -2 >=0
<=> a/b + b/a >= 2
chứng minh tương tự, ta có (c/a+a/c) >=2, (b/c+c/b) >=2
vậy (1) >= 3 + 2 +2 +2 = 9 (đpcm)
1/a+1/b+1/c >= 9
<=>(1/a+1/b+1/c)(a+b+c) >= 9(a+b+c)=9 (do a+b+c=1)
<=>3+(a/b+b/a)+(b/c+c/b)+(c/a+a/c)
áp dụng bđt côsi cho các số dương a/b,b/a,b/c,c/b,c/a,a/c
a/b+b/a >= 2.căn a/b . b/a =2
Tương tự b/c+c/b >= 2,c/a+a/c >= 2
=>3+(a/b+b/a)+(b/c+c/b)+(c/a+a/c) >= 3+2+2+2=9
=>đpcm
Sử dụng bất đẳng thức AM-GM cho 3 số thực dương ta có :
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\)
Nhân theo vế hai bất đẳng thức cùng chiều trên ta được :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=3.3=9\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Vậy ta có điều phải chứng minh