Bài 1: Chứng minh rằng giá trị các biểu thức sau không phụ thuộc vào biến x.
a) x(2x + 1) - x2(x + 2) + (x3 - x + 3)
b) x(3x2 - x + 5) - (2x3 + 3x - 16) - x(x2 - x + 2)
Bài 2: Chứng minh rằng các biểu thức sau đây bằng 0
a) x(y - z) + y(z - x) + z(x - y)
b) x(y + z -yz) - y(z + x - zx) + z(y - x)
Nhanh giúp mình với, đang cần gấp!!
Bài 1:
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^3-x+3=3\)
\(\)Vậy bt trên ko phụ thuộc vào gt của biến
b) \(x\left(3x^2-x+5\right)-\left(2x^3+3x-16\right)-x\left(x^2-x+2\right)\)
Cái này thì mk ko chứng minh được vì nó còn thừa ra 3x á
Bài 2:
a) \(x\left(y-z\right)+y\left(z-x\right)+z\left(x-y\right)\)
\(=xy-xz+yz-xy+xz-yz\)
\(\left(xy-xy\right)-\left(xz-xz\right)+\left(yz-yz\right)\)
\(=0\left(đpcm\right)\)
b) \(x\left(y+z-yz\right)-y\left(z+x-zx\right)+z\left(y-x\right)\)
\(=xy+xz-xyz-yz-xy+xyz+yz-xz\)
\(=\left(xy-xy\right)+\left(xz-xz\right)-\left(xyz-xyz\right)-\left(yz-yz\right)\)
\(=0\left(đpcm\right)\)