Giải pt
\(2x^4+x^3+6x^2+x+2=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
Như thế này @Cold Wind
\(\sqrt{2y-2}+\sqrt{4-x}-x^2+6x-11=0\)
\(\Leftrightarrow\sqrt{2y-2}+\sqrt{4-x}=x^2-6x+11\)
\(\Leftrightarrow\sqrt{2y-2}+\sqrt{4-2y}=4y^2-12y+11\)
Ta có \(VT^2\le\left(1+1\right)\left(2y-2+4-2y\right)=2^2\)
\(\Leftrightarrow VT\le2\)
Mà \(VP=4y^2-12y+11=\left(2y-3\right)^2+2\ge2\)
\(VT\le VP=2\Leftrightarrow VT=VP=2\)
\(\Leftrightarrow\left(2y-3\right)^2+2=2\Leftrightarrow2y-3=0\Leftrightarrow y=\dfrac{3}{2}\Leftrightarrow x=3\)
a). (x - 2) (x - 3) + (x - 2) - 1 =0
<=>(x-2)(x-3+1)-1=0
<=>(x-2)(x-2)-1=0
<=>(x-2)2-1=0
<=>(x-2-1)(x-2+1)=0
<=>(x-3)(x-1)=0
<=>x-3=0 hoặc x-1=0
<=>x=3 hoặc x=1
vậy S={3;1}
b). 6x^3 + x^2 = 2x
<=>6x3+x2-2x=0
<=>x(6x2+x-2)=0
<=>x(6x2-3x+4x-2)=0
<=>x[3x(2x-1)+2(2x-1)]=0
<=>x(2x-1)(3x+2)=0
<=>x=0 hoặc 2x-1=0 hoặc 3x-2=0
<=>x=0 hoặc x=1/2 hoặc x=2/3
vậy S={0;1/2;2/3}
Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé
c: =>(x+2)(x+3)(x-5)(x-6)=180
=>(x^2-3x-10)(x^2-3x-18)=180
=>(x^2-3x)^2-28(x^2-3x)=0
=>x(x-3)(x-7)(x+4)=0
=>\(x\in\left\{0;3;7;-4\right\}\)
c: =>(x-3)(x+2)(2x+1)(3x-1)=0
=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)
a) \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\)\(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(-x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
Vậy...
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
Đề đúng ch bn
chết :> sai đề, sr bạn ha
\(2x^4+x^3-6x^2+x+2=0\)