Rút gọn:
a.\(\sqrt{21-6\sqrt6}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
b.\(\sqrt{4+\sqrt{15}}-\sqrt{7-3\sqrt{5}}\)
c.\(\sqrt{\dfrac{13}{4}+\sqrt{3}}\)\(-\sqrt{\dfrac{7}{4}-\sqrt{3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
\(=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}\)
\(=10\sqrt{5}\)
b) Ta có: \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
\(=3\left(2-\sqrt{3}\right)+4+\sqrt{3}+2\sqrt{3}\)
\(=6-2\sqrt{3}+4+3\sqrt{3}\)
\(=10+\sqrt{3}\)
c) Ta có: \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
=7-5=2
d) Ta có: \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
\(=2+\sqrt{3}-5+\sqrt{3}\)
\(=-3+2\sqrt{3}\)
a. \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
\(=2.4\sqrt{5}+3.3\sqrt{5}-7\sqrt{5}\)
\(=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}\)
\(=10\sqrt{5}\)
b. \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
\(=\dfrac{3\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\dfrac{13\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}+\dfrac{6\sqrt{3}}{\sqrt{3}.\sqrt{3}}\)
\(=\dfrac{3\left(2-\sqrt{3}\right)}{4-3}+\dfrac{13\left(4+\sqrt{3}\right)}{16-3}+\dfrac{6\sqrt{3}}{3}\)
\(=3\left(2-\sqrt{3}\right)+\dfrac{13\left(4+\sqrt{3}\right)}{13}+2\sqrt{3}\)
\(=6-3\sqrt{3}+4+\sqrt{3}+2\sqrt{3}\)
\(=10\)
c. \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right).\left(\sqrt{7}-\sqrt{5}\right)\)
\(=\left(\sqrt{7}+\sqrt{5}\right).\left(\sqrt{7}-\sqrt{5}\right)\)
\(=7-5=2\)
d. \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
\(=\left|2+\sqrt{3}\right|-\sqrt{5^2-2.5.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\left|2+\sqrt{3}\right|-\left(5-\sqrt{3}\right)^2\)
\(=\left|2+\sqrt{3}\right|-\left|5-\sqrt{3}\right|\)
\(=2+\sqrt{3}-\left(5-\sqrt{3}\right)\) (vì \(\left|2+\sqrt{3}\right|\ge0,\left|5-\sqrt{3}\right|\ge0\))
\(=2+\sqrt{3}-5+\sqrt{3}\)
\(=2\sqrt{3}-3\)
Lời giải:
a.
\(=2\sqrt{4^2.5}+3\sqrt{3^2.5}-\sqrt{7^2.5}=2.4\sqrt{5}+3.3\sqrt{5}-7\sqrt{5}\)
\(=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}=10\sqrt{5}\)
b.
\(=\frac{3(2-\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}+\frac{13(4+\sqrt{3})}{(4-\sqrt{3})(4+\sqrt{3})}+\frac{6\sqrt{3}}{3}\)
\(=\frac{6-3\sqrt{3}}{1}+\frac{13(4+\sqrt{3})}{13}+2\sqrt{3}=6-3\sqrt{3}+4+\sqrt{3}+2\sqrt{3}\)
\(=10\)
c.
\(=\left[\frac{\sqrt{7}(\sqrt{2}-1)}{\sqrt{2}-1}+\frac{\sqrt{5}(\sqrt{3}-1)}{\sqrt{3}-1}\right].(\sqrt{7}-\sqrt{5})\)
\(=(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})=7-5=2\)
d.
\(=|2+\sqrt{3}|-\sqrt{5^2-2.5\sqrt{3}+3}=|2+\sqrt{3}|-\sqrt{(5-\sqrt{3})^2}\)
\(=|2+\sqrt{3}|-|5-\sqrt{3}|=2+\sqrt{3}-(5-\sqrt{3})=-3+2\sqrt{3}\)
a)\(A=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
\(=\sqrt[3]{1+3\sqrt{2}+3\sqrt{2^2}+2\sqrt{2}}-\sqrt[3]{2\sqrt{2}-3\sqrt{2^2}+3\sqrt{2}-1}\)
\(=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[.3]{\left(\sqrt{2}-1\right)^3}\)
\(=1+\sqrt{2}-\left(\sqrt{2}-1\right)=2\)
b)\(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
\(\Leftrightarrow B^3=5+2\sqrt{13}+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}\left(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5+2\sqrt{13}}\right)+5-2\sqrt{13}\)
\(\Leftrightarrow B^3=10+3.\sqrt[3]{-27}.B\)
\(\Leftrightarrow B^3+9B-10=0\)
\(\Leftrightarrow\left(B-1\right)\left(B^2+B+10\right)=0\)
\(\Leftrightarrow B=1\) (vì \(B^2+B+10>0\))
c)\(C=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
\(\Leftrightarrow2C=\sqrt[3]{8\sqrt{5}+16}-\sqrt[3]{8\sqrt{5}-16}=\sqrt[3]{1+3\sqrt{5}+3\sqrt{5^2}+5\sqrt{5}}-\sqrt[3]{5\sqrt{5}-3\sqrt{5^2}+3\sqrt{5}-1}\)
\(=\sqrt[3]{\left(1+\sqrt{5}\right)^3}-\sqrt[3]{\left(\sqrt{5}-1\right)^3}\)
\(=1+\sqrt{5}-\left(\sqrt{5}-1\right)\)
\(\Rightarrow C=1\)
d) \(D=\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)
\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\left(\sqrt[3]{9^2}-\sqrt[3]{6}+\sqrt[3]{2^2}\right)}\left(\dfrac{1+\sqrt{2}}{\sqrt{\left(1-\sqrt{3}\right)^2}}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\right)\)
\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{5}.\dfrac{1+\sqrt{2}}{\left|1-\sqrt{3}\right|}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)
\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(\sqrt{2}\right)^2-1}{\left(\sqrt{3}\right)^2-1}\)
\(=\sqrt[3]{3}+\sqrt[3]{2}\)
Vậy...
Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)
=1
a. \(\dfrac{\sqrt{2}.\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7}.\left(\sqrt{3}+\sqrt{5}\right)}=\dfrac{\sqrt{2}}{\sqrt{7}}=\sqrt{\dfrac{2}{7}}\)
d. \(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}=\dfrac{\sqrt{5-2\sqrt{5}+1}}{\sqrt{5}-1}=\dfrac{\left(\sqrt{5}-1\right)^2}{\sqrt{5}-1}=\sqrt{5}-1\)
`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`
`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`
`=root{3}{4(1-sqrt3)(1+sqrt3)}`
`=root{3}{4(1-3)}=-2`
`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`
`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`
`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`
`=root{3}{9}`
`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`
`=root{3}{(8sqrt5-16)(8sqrt5+16)}`
`=root{3}{320-256}`
`=root{3}{64}=4`
`b)root{3}{7-5sqrt2}-root{6}{8}`
`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`
`=root{3}{(1-sqrt2)^3}-sqrt2`
`=1-sqrt2-sqrt2=1-2sqrt2`
d: \(D=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\)
\(=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{3\left(x+y\right)}{2}\)
\(=\dfrac{3}{x-y}\)
Lời giải:
1/
\(=\frac{3.\sqrt{5}-\sqrt{5}.\sqrt{15}}{\sqrt{15}-3}=\frac{-\sqrt{5}(\sqrt{15}-3)}{\sqrt{15}-3}=-\sqrt{5}\)
2/
\(=\frac{\sqrt{2+2\sqrt{2.3}+3}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{(\sqrt{2}+\sqrt{3})^2}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}}=1\)
3/
\(=\frac{2^2+2.2\sqrt{3}+3}{2+\sqrt{3}}=\frac{(2+\sqrt{3})^2}{2+\sqrt{3}}=2+\sqrt{3}\)