CHO a+b=c(a,b thuôc Z).
CM a.b<=(c/2)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a+b+c=1 <=>(a+b+c)2 = 1 <=> ab+bc+ca=0 (1)
Theo dãy tỉ số bằng nhau ta có:
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+zxa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z)
=> xy+yz+zx= ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2)
từ (1) và (2) => xy + yz + zx = 0
1) Từ \(-2\le a,b,c\le3\) suy ra :
\(\left(a+2\right)\left(a-3\right)\le0\Leftrightarrow a^2-a-6\le0\Leftrightarrow a^2\le a+6\)
\(\left(b+2\right)\left(b-3\right)\le0\Leftrightarrow b^2-b-6\le0\Leftrightarrow b^2\le b+6\)
\(\left(c+2\right)\left(c-3\right)\le0\Leftrightarrow c^2-c-6\le0\Leftrightarrow c^2\le c+6\)
Cộng các bđt trên theo vế ta có đpcm
2) \(P=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)=\frac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{xyz}\)
Từ giả thiết : \(x+1=\left(1-y\right)+\left(1-z\right)\ge2\sqrt{\left(1-y\right)\left(1-z\right)}=2\sqrt{\left(x+z\right)\left(x+y\right)}\)
Tương tự : \(y+1\ge2\sqrt{\left(y+x\right)\left(y+z\right)}\) , \(z+1\ge2\sqrt{\left(z+y\right)\left(z+x\right)}\)
\(\Rightarrow\frac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{xyz}\ge\frac{8\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{8.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{64xyz}{xyz}=64\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y+z=1\\x+y=y+z=z+x\end{cases}\Leftrightarrow}x=y=z=\frac{1}{3}\)
Vậy Min P = 64 tại x = y = z = 1/3
a) /5x-3/<2
Suy ra: 5x-3>2 hoặc 5x-3<-2
5x>2+3 hoặc 5x<(-2)+3
5x>5 ; 5x<1
Vậy x>1 và x<0,2 (x không có giá trị cụ thể)
Các câu tiếp theo cậu cũng làm tương tự vậy nhé!
Ta có: \(a+b=c\Rightarrow\frac{a+b}{2}=\frac{c}{2}\Rightarrow\left(\frac{a+b}{2}\right)^2=\left(\frac{c}{2}\right)^2\)
Như vậy ta cần cm: \(ab\le\left(\frac{a+b}{2}\right)^2\Leftrightarrow4ab\le\left(a+b\right)^2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Vậy ta có đpcm.