K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tìm abcd nếu

4.abcd = dcba

2
8 tháng 7 2019

\(\overline{abcd};\overline{dcba}\)là số tự nhiên có bốn chữ số

=> \(a,d\ne0\)

Và vì: \(4.\overline{abcd}=\overline{dcba}\)

=> a<3

TH1: a=1

Khi đó ta có: \(4.\overline{1bcd}=\overline{dcb1}\)

Loại vì không tồn tại số nhân với 4 được số tự nhiên tận cùng là 1

TH2: a=2

Khi đó ta có: \(4.\overline{2bcd}=\overline{dcb2}\)

=> d=3 hoặc d=8

+) Với d =3 ta có:

\(4.\overline{2bc3}=\overline{3cb2}\)loại ( vì 4.2=8>3)

+) Với d=8

ta có: \(4.\overline{2bc8}=\overline{8cb2}\)

<=> \(4.\left(2000+b.100+c.10+8\right)=8000+c.100+b.10+2\)

<=> \(390b-60c+30=0\)

<=> \(13b-2c+1=0\)

<=> \(c=\frac{13b+1}{2}\)

=> b=1 và c=7

Vậy số tự nhiên cần tìm là: 2178 và 4x2178=8712

Cô ơi e có cách giải mới mong cô xem qua 

Số cần tìm có dạng \(\overline{abcd}\)

Ta có 4.\(\overline{abcd}=\overline{dcba}\Rightarrow\overline{dcba}⋮4\Rightarrow a\in\left\{0;1;4;6;8\right\}\)

Xét các trường hợp thấy \(a\in0\)và nếu \(a\ge4\)thì \(4.\overline{abcd}\ge4.4000>9999\ge\overline{dcba}\)

và a=2 =>\(\overline{abcd}=\overline{dcba}\ge4.2000=8000=>d\in\left\{8;9\right\}\)

Mà \(\overline{dcba}=4\overline{abcd}\Rightarrow4.d\)phải tận cùng bằng chữ số a.

Mặt khác :4.8=32;4.9=36=>d=8

Ta có \(\overline{dcba}=100.dc+ba=2.5.4.dc+ba⋮4\)

=>ba\(⋮\)4

Vì a\(⋮\)2 theo trên =>b\(\in\){1;3;5;7;9}

Xét các trường hợp của b

Nếu \(b\ge3\Rightarrow\overline{8cba}\ge4.2300=9200\)(vô lí )

Nếu b : 1=>\(\overline{8bc12}=4.\overline{2108}\)

=>8012+100c=4.2108+4.10.c

=>60c=420

=>c=420:60

=>c=7

Vậy \(\overline{abcd}=2178\)

13 tháng 10 2016

:  bạn có thể tìm thấy bài này trong 255 bài toán số học chọn lọc 
nếu chưa có sách này bạn chịu khó chờ một chút, mình sẽ viết bài ngay 
a,b,c,d là các chữ số 
=> d<10 
=> 0<a<3 
mà 4 là số chẵn 
=> dcba là số chẵn 
=> a chẵn 
=> a = 2 
ta có 4. 2bcd = dcb2 
=> d có thể nhận các giá trị 8 hoặc 9 
mà một số có tận cùng là 8 nhân với 4 sẽ được số tận cùng là 2 
=> d = 8 
ta có 4. 2bc8 = 8cb2 
<=> 4. (2000 + 100b + 10c + 8) = 8000 + 100c + 10b + 2 
<=> 8000 + 400b + 40c + 32 = 8000 + 100c + 10b + 2 
<=> 60c - 390b = 30 
<=> 2c - 13b = 1 
<=> 13b + 1 = 2c 
mà 2c < 20 
=> 13b < 19 
=> b < 2 
2c là số chẵn => b lẻ 
=> b = 1 
=> c = 7 
thử lại thấy thỏa mãn 
vậy số cần tìm là 2178

13 tháng 10 2016

bạn ơi abcd là 1 stn nha

14 tháng 7 2016

Các bạn giải hẳn ra nhé. Tks

a,b,c,d là các chữ số 
=> d<10 
=> 0<a<3 
mà 4 là số chẵn 
=> dcba là số chẵn 
=> a chẵn 
=> a = 2 
ta có 4. 2bcd = dcb2 
=> d có thể nhận các giá trị 8 hoặc 9 
mà một số có tận cùng là 8 nhân với 4 sẽ được số tận cùng là 2 
=> d = 8 
ta có 4. 2bc8 = 8cb2 
<=> 4. (2000 + 100b + 10c + 8) = 8000 + 100c + 10b + 2 
<=> 8000 + 400b + 40c + 32 = 8000 + 100c + 10b + 2 
<=> 60c - 390b = 30 
<=> 2c - 13b = 1 
<=> 13b + 1 = 2c 
mà 2c < 20 
=> 13b < 19 
=> b < 2 
2c là số chẵn => b lẻ 
=> b = 1 
=> c = 7 
thử lại thấy thỏa mãn 
vậy số cần tìm là 2178

6 tháng 10 2019

4.abcd =dcba\(\le9999=>abcd\le2499\)=> a=1 hoặc a=2

mà 4.abcd là số chẵn lên dcba là số chẵn => a=2

dcb2=4.2bcd>4.2000=8000 => d=8 hoặc 9

d=9 thì 4.2bc9 = 9bc2 (4.2bc9 phải có số tận cùng là 6 mà 9bc2 có tận cùng là 2 nên không phù hợp)

vậy d=8 => 4.2bc8=8cb2 <=>4.(2000+100b+10c+8)=8000+100b+10c+2 <=>300b+30c+30=0 (vô lý vì b;c\(\ge0\)

4 tháng 4 2016

abcd=8712

Vì 2178*4=8712

(Thử chọn nha)

30 tháng 3 2016

bạn thử thay số rồi trừ ấy nhớ đúng điều kiện

bài này mình gặp hoài aftreen violympic phải không vậy ?

5 tháng 1 2019

d=3, c=8, B=9, a=1. Abcd=1983

5 tháng 12 2017

d=3, c=8, B=9, a=1. Abcd=1983