giúp mk với cần gấp
cho a,b,c>0 tm 1/a +1/b+1/c=2016 cmrbc/a^2(3b+c)+ac/b^2(3c+a)+ab/c^2(3a+b)>=504
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)
\(=\frac{6047-a}{2015+a}+\frac{6048-b}{2016+b}+\frac{6049-c}{2017+c}\)
\(=\frac{8062}{2015+a}+\frac{8064}{2016+b}+\frac{8066}{2017+c}-3\)
\(\ge\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{2015+2016+2017+a+b+c}-3=\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{8064}-3\)
Dấu = xảy ra khi ....
Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)
Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)
\(\Rightarrowđpcm\)
Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v
Lời giải:
Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:
\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)
\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)
\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)
\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)
Ta có
\(VT=\frac{\frac{1}{a^2}}{\frac{3}{c}+\frac{1}{b}}+\frac{\frac{1}{b^2}}{\frac{3}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{3}{b}+\frac{1}{a}}\)
Áp dụng bất đẳng thức buniacoxki dạng phân thức:
=> \(VT\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{4}{a}+\frac{4}{b}+\frac{4}{c}}=\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{4}=504\)
Dấu bằng xảy ra khi a=b=c=3/2016
Cauchy-SChwarz:
\(\left(9a^3+3b^2+c\right)\left(\dfrac{1}{9a}+\dfrac{1}{3}+c\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\dfrac{a}{\left(9a^3+3b^2+c\right)}\le\dfrac{a\left(\dfrac{1}{9a}+\dfrac{1}{3}+c\right)}{\left(a+b+c\right)^2}=\dfrac{\dfrac{1}{9}+\dfrac{a}{3}+ac}{\left(a+b+c\right)^2}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(P\le\dfrac{1}{9}\cdot3+\dfrac{a+b+c}{3}+ab+bc+ca\)
\(\le\dfrac{1}{9}\cdot3+\dfrac{a+b+c}{3}+\dfrac{\left(a+b+c\right)^2}{3}=1\)
Dấu "=" \(\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Cho mình hỏi, phân thức cuối cùng của câu a phải là \(\frac{1}{c+2a+b}\)chứ
#)Trả lời :
\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{a+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)
Tách VT = A + B và xét :
\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3b}{1+a^2}=\)\(\sum\)\(\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(3a-\frac{3ab}{2}\right)\)
\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\)\(\sum\)\(\left(1-\frac{b^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(1-\frac{b}{2}\right)\)
\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\)\(\sum\)\(ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)
( Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))
Dấu ''='' xảy ra khi a = b = c = 1
Tham khảo nhé ^^
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\) suy ra x, y, z >0 và x + y + z = 2016
BĐT \(\Leftrightarrow\frac{\frac{1}{yz}}{\frac{1}{x^2}\left(\frac{3}{y}+\frac{1}{z}\right)}+\frac{\frac{1}{zx}}{\frac{1}{y^2}\left(\frac{3}{z}+\frac{1}{x}\right)}+\frac{\frac{1}{xy}}{\frac{1}{z^2}\left(\frac{3}{x}+\frac{1}{y}\right)}\ge504\)
\(\Leftrightarrow\frac{x^2}{3z+y}+\frac{y^2}{3x+z}+\frac{z^2}{3y+x}\ge504\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel suy ra:
\(VT\ge\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+z}{4}=\frac{2016}{4}=504\) (đpcm)
Đẳng thức xảy ra khi x = y = z = 672 hay \(a=b=c=\frac{1}{672}\)