Tìm x
\(4-x=2\left(x-4\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(VT=\dfrac{\left(x+4\right)-\left(x+2\right)}{\left(x+2\right)\left(x+4\right)}+\dfrac{\left(x+8\right)-\left(x+4\right)}{\left(x+4\right)\left(x+8\right)}+\dfrac{\left(x+14\right)-\left(x+8\right)}{\left(x+8\right)\left(x+14\right)}=\)
\(=\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+8}+\dfrac{1}{x+8}-\dfrac{1}{x+14}=\)
\(=\dfrac{1}{x+2}-\dfrac{1}{x+14}=\dfrac{12}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\dfrac{12}{\left(x+2\right)\left(x+14\right)}=\dfrac{x}{\left(x+2\right)\left(x+14\right)}\left(x\ne-2;x\ne-14\right)\)
\(\Rightarrow x=12\)
\(\dfrac{x}{2023}+\dfrac{x+1}{2022}+...+\dfrac{x+2022}{1}+2023=0\)
\(\dfrac{1}{2023}x+\dfrac{1}{2022}x+\dfrac{1}{2022}\cdot1+...+\dfrac{1}{1}x+\dfrac{1}{1}\cdot2022+2023=0\)
\(x\left(\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}\right)+\left(\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023\right)=0\)
\(x\left(\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}\right)=\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023\)
\(x=\dfrac{\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023}{\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}}\)
\(x=\dfrac{\dfrac{1}{2022}+\dfrac{2022}{2022}+\dfrac{2}{2021}+\dfrac{2021}{2021}+...+\dfrac{2022}{1}+\dfrac{1}{1}}{\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}}\)
\(x=\dfrac{\dfrac{2023}{2022}+\dfrac{2023}{2021}+...+\dfrac{2023}{1}}{\dfrac{1}{2022}+\dfrac{1}{2021}+...+\dfrac{1}{1}}=2023\)
Vậy x = 2023
1: Ta có: \(4x^2-36=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
2: Ta có: \(\left(x-1\right)^2+x\left(4-x\right)=11\)
\(\Leftrightarrow x^2-2x+1+4x-x^2=11\)
\(\Leftrightarrow2x=10\)
hay x=5
a. (x - 22) - 1 = 0
<=> x - 4 - 1 = 0
<=> x = 5
b. 4 - (x - 2)2 = 0
<=> 22 - (x - 2)2 = 0
<=> (2 - x + 2)(2 + x - 2) = 0
<=> x(4 - x) = 0
<=> \(\left[{}\begin{matrix}x=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
d. (3x - 2)2 - (2x + 3)2 = 5(x + 4)(x - 4)
<=> (3x - 2 - 2x - 3)(3x - 2 + 2x + 3) = 5(x2 - 16)
<=> (x - 5)(5x + 1) = 5x2 - 80
<=> 5x2 + x - 25x - 5 = 5x2 - 80
<=> 5x2 - 5x2 + x - 25x = -80 + 5
<=> -24x = -75
<=> x = \(\dfrac{25}{8}\)
Lời giải:
a. Đặt $x^2-2x=a$ thì pt trở thành:
$a^2+3a+2=0$
$\Leftrightarrow (a+1)(a+2)=0$
$\Leftrightarrow a+1=0$ hoặc $a+2=0$
$\Leftrightarrow x^2-2x+1=0$ hoặc $x^2-2x+2=0$
Nếu $x^2-2x+1=0\Leftrightarrow (x-1)^2=0\Leftrightarrow x=1$
Nếu $x^2-2x+2=0\Leftrightarrow (x-1)^2=-1<0$ (vô lý)
Vậy pt có nghiệm duy nhất $x=1$
b.
Đặt $x^2+x=a$ thì pt trở thành:
$a(a-4)+4=0$
$\Leftrightarrow a^2-4a+4=0$
$\Leftrightarrow (a-2)^2=0$
$\Leftrightarrow a-2=0$
$\Leftrightarrow x^2+x-2=0$
$\Leftrihgtarrow (x-1)(x+2)=0$
$\Rightarrow x=1$ hoặc $x=-2$
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+4\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}-\frac{1}{x+8}-\frac{1}{x+16}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+16}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{\left(x+16\right)-\left(x+2\right)}{\left(x+2\right)\left(x+16\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow x+16-x-2=x\)
\(\Rightarrow x=14\)
ĐKXĐ:\(x\ne\left\{-2;-4;-8;-14\right\}\)
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+4\right)}\)
\(\Leftrightarrow2\left(x+8\right)\left(x+14\right)+4\left(x+2\right)\left(x+14\right)+6\left(x+2\right)\left(x+4\right)=x\left(x+8\right)\left(x+14\right)\)
\(\Leftrightarrow2x^2+44x+224+4x^2+64x+112+6x^2+36x+48=x^3+22x^2+112x\)
\(\Leftrightarrow12x^2+144x+384=x^3+22x^2+112x\)
\(\Leftrightarrow x^3+22x^2-12x^2+112x-144x-384=0\)
\(\Leftrightarrow x^3+10x^2-32x-384=0\)
\(\Leftrightarrow\left(x-6\right)\left(x^2+16x+64\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+8\right)^2=0\)
\(\Leftrightarrow x=6\)(x=-8 loại vì x=-8 thì PT không xác định)
Đặt \(t=\left(x+\frac{1}{x}\right)^2\)\(\Rightarrow\)\(x^2+\frac{1}{x^2}=t-2\)điều kiện t>=0,x # 0
Phương trình trở thành
8t +4(t-2)2 - 4(t-2)2t =(x+4)2
8t + 4t2 - 16t + 16 -4t3 + 16t2 - 16t=(x+4)2
-4t3 + 20t2 -24t=x2 +8x
-4t(t2 -5t +6)=x(x+8)
-4t(t-2)(t-3)=x(x+8)
Mình chỉ giúp dược tới đó
4 - x = 2.( x - 4 )2
\(\Leftrightarrow\) - ( x - 4 ) - 2.( x - 4 )2 = 0
\(\Leftrightarrow\)(x - 4 ).[( -1 - 2.( x - 4 ) ] = 0
\(\Leftrightarrow\)( x - 4 ).( -1 - 2x + 8 ) = 0
\(\Leftrightarrow\) ( x - 4 ).( -2x + 7 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-4=0\\-2x+7=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=4\\x=\frac{7}{2}\end{cases}}\)
Vậy x = 4 , x = \(\frac{7}{2}\)
\(4-x=2\left(x-4\right)^2\)
\(4-x=2\left(4-x\right)^2\)
\(\left(4-x\right)-2\left(4-x\right)^2=0\)
\(\left(4-x\right)\left[1-2\left(4-x\right)\right]=0\)
\(\left(4-x\right)\left(-7+2x\right)=0\)
\(\Rightarrow4-x=0\Leftrightarrow x=4\)
hoặc \(-7+2x=0\Leftrightarrow2x=7\Leftrightarrow x=\frac{7}{2}\)
Vậy \(x\in\left\{4;\frac{7}{2}\right\}\)