so sánh:
a, 21 và \(\sqrt{147}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\sqrt{3}-1=\sqrt{4-2\sqrt{3}}\)
mà \(4-3\sqrt{3}< 4-2\sqrt{3}\)
nên \(\sqrt{4-3\sqrt{3}}< \sqrt{3}-1\)
Đề này sai rồi bạn vì \(4-3\sqrt{3}< 0\)
a) \(\frac{{ - 21}}{{10}}\) < 0
b) \(\frac{{ - 5}}{{ - 2}} = \frac{5}{2} > 0\). Vậy \(\frac{{ - 5}}{{ - 2}} > 0\).
c) \(\frac{{ - 5}}{{ - 2}} = \frac{5}{2} > 0\), mà \(\frac{{ - 21}}{{10}} < 0\)
Vậy \(\frac{{ - 5}}{{ - 2}} > \frac{{ - 21}}{{10}}\).
a: \(-\dfrac{21}{10}< 0\)
b: \(0< -\dfrac{5}{-2}\)
c: \(-\dfrac{21}{10}< 0< \dfrac{-5}{-2}\)
c.
(\sqrt{5}-\sqrt{3})-(\sqrt{10}-\sqrt{7})=(\sqrt{5}+\sqrt{7})-(\sqrt{3}+\sqrt{10})
Mà:
\((\sqrt{5}+\sqrt{7})^2=12+\sqrt{35}< 12+\sqrt{36}=18\)
\((\sqrt{3}+\sqrt{10})^2=13+\sqrt{30}>13+\sqrt{25}=18\)
\(\Rightarrow \sqrt{3}+\sqrt{10}> \sqrt{5}+\sqrt{7}\Rightarrow \sqrt{5}-\sqrt{3}< \sqrt{10}-\sqrt{7}\)
Lời giải:
a.
$5+\sqrt{2}>5+\sqrt{1}=6$
$4+\sqrt{3}< 4+\sqrt{4}=6$
$\Rightarrow 5+\sqrt{2}>4+\sqrt{3}$
b.
$\sqrt{8}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}$
$\sqrt{5}-\sqrt{3}=\frac{5-3}{\sqrt{5}+\sqrt{3}}=\frac{2}{\sqrt{5}+\sqrt{3}}< \frac{2}{\sqrt{2}}=\sqrt{2}$
Vậy $\sqrt{8}-\sqrt{2}>\sqrt{5}-\sqrt{2}$
a) 4,9(18) = 4,91818…< 4,928… (vì chữ số hàng phần trăm của 4,91818 là 1 nhỏ hơn chữ số hàng phần trăm của 4,928 là 2)
Vậy 4,9(18) < 4,928
b) Vì 4,315 < 4,318… nên -4,315 > -4,318…
c) Vì 3 < \(\frac{7}{2}\) nên \(\sqrt 3 \) < \(\sqrt {\frac{7}{2}} \)
a, \(\sqrt{2}+\sqrt{11}< \sqrt{3}+\sqrt{25}=\sqrt{3}+5.\)
b, \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
a) Ta có: 1,(81) = 1,8181…
Vì 1,8181… > 1,812 nên -1,8181… < -1,812 hay -1,(81) < -1,812
b) Ta có: \(2\frac{1}{7}\) = 2,142857….
Vì 2,142857….> 2,142 nên \(2\frac{1}{7}\) > 2,142
c) Vì 48,075… < 48,275… nên - 48,075…. > – 48,275…
d) Vì 5 < 8 nên \(\sqrt 5 \) < \(\sqrt 8 \)
a: -1,(81)>-1,812
b: 2+1/7>2,142
c: -48,075...>-48,275...
d: \(\sqrt{5}< \sqrt{8}\)
a) \(\left(-\dfrac{1}{3}\sqrt{63}\right)^2=\dfrac{1}{9}\cdot63=7\)
\(\left(-2\sqrt{2}\right)^2=8\)
mà 7<8
nên \(-\dfrac{1}{3}\sqrt{63}>-2\sqrt{2}\)
b) Ta có: \(\left(2\sqrt{55}\right)^2=4\cdot55=220\)
\(\left(\dfrac{3}{5}\sqrt{750}\right)=\dfrac{9}{25}\cdot750=270\)
mà 220<270
nên \(2\sqrt{55}< \dfrac{3}{5}\sqrt{750}\)
hay \(-2\sqrt{55}< -\dfrac{3}{5}\sqrt{750}\)
a) Ta có: 1,(32) = 1,323232….
Quan sát chữ số ở hàng thập phân thứ 2, ta thấy 1 < 2 nên 1,313233… < 1,(32)
b) Ta có: \(\sqrt 5 = 2,236 \ldots .\)
Quan sát chữ số ở hàng thập phân thứ nhất, ta thấy 2 < 3 nên 2,236 < 2,36
Vậy \(\sqrt 5 \) < 2,36
Ta có: 21=\(\sqrt{441}\)
Mà \(\sqrt{441}>\sqrt{147}\)
\(\Rightarrow\)21>\(\sqrt{147}\)
Ta có:
\(21=\sqrt{441}\)
Vì 441 > 147
\(\Rightarrow\sqrt{441}>\sqrt{147}\)
\(\Rightarrow21>\sqrt{147}\)