Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính
\(\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+...+\frac{127}{128}-6\)
Đặt A =\(\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+...+\frac{127}{128}-6\)
= \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{128}\right)-6\)
= \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{2^3}\right)+...+\left(1-\frac{1}{2^7}\right)-6\)(7 cặp số)
= \(1-\frac{1}{2}+1-\frac{1}{2^2}+1-\frac{1}{2^3}+...+1-\frac{1}{2^7}-6\)
= \(\left(1+1+1+...+1\right)-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^7}-6\)
= \(1.7-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)-6\)
= \(7-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)-6\)
= \(7-6-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
= \(1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
=> 2A = \(2-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)
Lấy 2A - A = \(\left(2-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\right)-\left(1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\right)\)
A = \(2-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^6}-1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\)
= \(2-1-1+\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^6}\right)\)
= \(0+\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^3}+...+\frac{1}{2^6}-\frac{1}{2^6}+\frac{1}{2^7}\right)\)
= \(0+\frac{1}{2^7}\)
= \(\frac{1}{2^7}\)
Đặt A =\(\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+...+\frac{127}{128}-6\)
= \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{128}\right)-6\)
= \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{2^3}\right)+...+\left(1-\frac{1}{2^7}\right)-6\)(7 cặp số)
= \(1-\frac{1}{2}+1-\frac{1}{2^2}+1-\frac{1}{2^3}+...+1-\frac{1}{2^7}-6\)
= \(\left(1+1+1+...+1\right)-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^7}-6\)
= \(1.7-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)-6\)
= \(7-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)-6\)
= \(7-6-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
= \(1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
=> 2A = \(2-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)
Lấy 2A - A = \(\left(2-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\right)-\left(1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\right)\)
A = \(2-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^6}-1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\)
= \(2-1-1+\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^6}\right)\)
= \(0+\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^3}+...+\frac{1}{2^6}-\frac{1}{2^6}+\frac{1}{2^7}\right)\)
= \(0+\frac{1}{2^7}\)
= \(\frac{1}{2^7}\)