K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

Để n - 3 / n +1 có giá trị nguyên

=> n-3 chia hết cho n +1

=> n + 1 - 4 chia hết cho n -1

=> -4 chia hết cho n - 1

=> ( n -1 ) thuộc ước -4 = -1;-2;-4;1;2;4

=> n = 0,-1,-3,2,3,5

Để \(\frac{n-3}{n+1}\)là giá trị nguyên 

\(\Rightarrow n-3⋮n+1\)

\(\Rightarrow n+1-4⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\inƯ\left(-4\right)\)

=>

n-1-1-2-4124
n0-1-3235

KL:....

23 tháng 2 2022

Để \(A\)là số nguyên

\(\Rightarrow n-2⋮n+3\)

Mà \(n-2=n+5-3\)

\(\Rightarrow5⋮n+3\)

\(\Rightarrow n+3\inƯ\left(5\right)\)

\(\Rightarrow n+3\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n+2\in\left\{-2;2;1;-4;4\right\}\)

a: Để A là phân số thì 2n+3<>0

=>n<>-3/2

b: Để A là số nguyên thì 12n+18-17 chia hết cho 2n+3

=>2n+3 thuộc {1;-1;17;-17}

=>n thuộc {-1;-2;7;-10}

2 tháng 9 2023

\(A=\left(n+5\right)^2-\left(n-6\right)^2\)

\(=\left(n+5-n+6\right)\left(n+5+n-6\right)\)

\(=11\left(2n-1\right)\)

Để \(A\) là số nguyên tố thì \(11\left(2n-1\right)\) là số nguyên tố

mà 11 là số nguyên tố \(\Rightarrow2n-1=1\Rightarrow n=1\left(tm\right)\) 

#\(Urushi\)

16 tháng 2 2017

De a la so tu nhien thi n+5 phai chia het cho n+1

                             hay (n+1)+4 chia het cho n+1

Vi n+1 chia het cho n+1\(\Rightarrow\)4 chia het cho n+1

                                   \(\Rightarrow\)n+1 thuoc U(4)={-4;-2;-1;1;2;4}

Ma n la so tu nhien nen n={0;1;3}

19 tháng 7 2020

a) \(A=\frac{4}{n-3}\)

Để A nguyên => \(\frac{4}{n-3}\)nguyên

=> \(4⋮n-3\)

=> \(n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-31-12-24-4
n42517-1

Vậy n thuộc các giá trị trên 

b) \(B=\frac{2n-1}{n+5}=\frac{2\left(n+5\right)-11}{n+5}=2-\frac{11}{n+5}\)

Để B nguyên => \(\frac{11}{n+5}\)nguyên

=> \(11⋮n+5\)

=> \(n+5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

n+51-111-11
n-4-66-16

Vậy n thuộc các giá trị trên 

19 tháng 7 2020

a) Để A nguyên thì 4 chia hết cho n-3

nên n thuộc:(4, 2,-1,5,1)

b) ta có B=\(\frac{2n+10-10-1}{n+5}\)=\(\frac{2.\left(n+5\right)-11}{n+5}\)=2-\(\frac{11}{n+5}\)

Để B nguyên =>11 chia hết cho n+5

=> n thuộc (6,-4,-16,-6)

9 tháng 3 2018

Ta có : 

\(A=\frac{14}{n+1}+\frac{-3}{n+1}=\frac{14-3}{n+1}=\frac{11}{n+1}\)

Để A là số nguyên thì \(11\) phải chia hết cho \(n+1\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(11\right)\)

Mà \(Ư\left(11\right)=\left\{1;-1;11;-11\right\}\)

Suy ra : 

\(n+1\)\(1\)\(-1\)\(11\)\(-11\)
\(n\)\(0\)\(-2\)\(10\)\(-12\)

Vậy \(n\in\left\{-12;-2;0;10\right\}\)

Chúc bạn học tốt ~

9 tháng 3 2018

A= \(\frac{14}{n+1}+\frac{-3}{n+1}\)

A= \(\frac{11}{n+1}\)

Để A nhận gt nguyên thì \(11⋮n+1\)

\(\Rightarrow n+1\inƯ_{\left(11\right)}=\left\{\pm1;\pm11\right\}\)

Ta có bảng sau:

n+11-111-11
n0-210-12

 Vậy \(n\in\left\{0;-2;10;-12\right\}\)

11 tháng 3 2018

 Ta có : 

\(A=\frac{14}{n+1}+\frac{-3}{n+1}=\frac{14-3}{n+1}=\frac{11}{n+1}\)

Để A là số nguyên thì \(\frac{11}{n+1}\) phải nguyên hay nói cách khác \(11\) phải chia hết cho \(n+1\)

\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(11\right)\)

Mà \(Ư\left(11\right)=\left\{1;-1;11;-11\right\}\)

Suy ra : 

\(n+1\)\(1\)\(-1\)\(11\)\(-11\)
\(n\)\(0\)\(-2\)\(10\)\(-12\)

Vậy \(n\in\left\{-12;-2;0;10\right\}\)

Chúc bạn học tốt ~