Tìm min, max (nếu có) của hàm số sau:
\(y=sin^{10}x+cos^{10}x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)
\(y=2-\left(-cosx\right).\left(-sinx\right)\)
y = 2 - sinx.cosx
y = \(2-\dfrac{1}{2}sin2x\)
Max = 2 + \(\dfrac{1}{2}\) = 2,5
Min = \(2-\dfrac{1}{2}\) = 1,5
2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)
Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)
Max = \(\sqrt{5}\)
\(P=sin^{10}x+cos^{10}x-\dfrac{sin^6x+cos^6x}{sin^22x+4cos^22x}\)
\(=sin^{10}x+cos^{10}x-\dfrac{\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)}{4-3sin^22x}\)
\(=sin^{10}x+cos^{10}x-\dfrac{1-\dfrac{3}{4}sin^22x}{4-3sin^22x}\)
\(=sin^{10}x+cos^{10}x-\dfrac{1}{4}\)
\(\le sin^2x+cos^2x-\dfrac{1}{4}=\dfrac{3}{4}\)
\(maxP=\dfrac{3}{4}\Leftrightarrow\left\{{}\begin{matrix}sin^{10}x=sin^2x\\cos^{10}x=cos^2x\end{matrix}\right.\Leftrightarrow x=\dfrac{k\pi}{2}\)
a.
\(y'=\dfrac{2-x}{2x^2\sqrt{x-1}}=0\Rightarrow x=2\)
\(y\left(1\right)=0\) ; \(y\left(2\right)=\dfrac{1}{2}\) ; \(y\left(5\right)=\dfrac{2}{5}\)
\(\Rightarrow y_{min}=y\left(1\right)=0\)
\(y_{max}=y\left(2\right)=\dfrac{1}{2}\)
b.
\(y'=\dfrac{1-3x}{\sqrt{\left(x^2+1\right)^3}}< 0\) ; \(\forall x\in\left[1;3\right]\Rightarrow\) hàm nghịch biến trên [1;3]
\(\Rightarrow y_{max}=y\left(1\right)=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)
\(y_{min}=y\left(3\right)=\dfrac{6}{\sqrt{10}}=\dfrac{3\sqrt{10}}{5}\)
c.
\(y=1-cos^2x-cosx+1=-cos^2x-cosx+2\)
Đặt \(cosx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=-t^2-t+2\)
\(f'\left(t\right)=-2t-1=0\Rightarrow t=-\dfrac{1}{2}\)
\(f\left(-1\right)=2\) ; \(f\left(1\right)=0\) ; \(f\left(-\dfrac{1}{2}\right)=\dfrac{9}{4}\)
\(\Rightarrow y_{min}=0\) ; \(y_{max}=\dfrac{9}{4}\)
d.
Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=t^3-3t^2+2\Rightarrow f'\left(t\right)=3t^2-6t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\notin\left[-1;1\right]\end{matrix}\right.\)
\(f\left(-1\right)=-2\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=2\)
\(\Rightarrow y_{min}=-2\) ; \(y_{max}=2\)
\(y=\frac{2cos^2x+2sinx.cosx}{2+2sin^2x}=\frac{1+cos2x+sin2x}{3-cos2x}\)
\(\Rightarrow3y-y.cos2x=1+cos2x+sin2x\)
\(\Rightarrow sin2x+\left(y+1\right)cos2x=3y-1\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(1^2+\left(y+1\right)^2\ge\left(3y-1\right)^2\)
\(\Leftrightarrow8y^2-8y-1\le0\)
\(\Rightarrow\frac{2-\sqrt{6}}{4}\le y\le\frac{2+\sqrt{6}}{4}\)
\(y=\left(1-cos^2x\right)^2+cos^2x-5\)
\(y=cos^4x-cos^2x-4\)
\(y=\left(cos^2x-\frac{1}{2}\right)^2-\frac{17}{4}\ge-\frac{17}{4}\)
\(y_{min}=-\frac{17}{4}\) khi \(cos^2x=\frac{1}{2}\)
\(y=cos^2x\left(cos^2x-1\right)-4=-cos^2x.sin^2x-4=-\frac{1}{4}sin^22x-4\)
Do \(-\frac{1}{4}sin^22x\le0\Rightarrow y\le-4\)
\(y_{max}=-4\) khi \(sin2x=0\)
Bài 9:
uses crt;
var x,y,n:integer;
begin
clrscr;
readln(n);
x:=0;
y:=0;
while (x*x+y*y<>n) do
begin
x:=x+1;
y:=y+1;
end;
writeln(x,' ',y);
readln;
end.
a: \(y'=4\cdot3x^2-3\cdot2x+2=12x^2-6x+2\)
b: \(y'=\dfrac{\left(x+1\right)'\left(x-1\right)-\left(x+1\right)\left(x-1\right)'}{\left(x-1\right)^2}=\dfrac{x-1-x-1}{\left(x-1\right)^2}=\dfrac{-2}{\left(x-1\right)^2}\)
c: \(y'=-2\cdot\left(\sqrt{x}\cdot x\right)'\)
\(=-2\cdot\left(\dfrac{x+x}{2\sqrt{x}}\right)=-2\cdot\dfrac{2x}{2\sqrt{x}}=-2\sqrt{x}\)
d: \(y'=\left(3sinx+4cosx-tanx\right)\)'
\(=3cosx-4sinx+\dfrac{1}{cos^2x}\)
e: \(y'=\left(4^x+2e^x\right)'\)
\(=4^x\cdot ln4+2\cdot e^x\)
f: \(y'=\left(x\cdot lnx\right)'=lnx+1\)
Lời giải:
Đặt \((\sin ^2x,\cos ^2x)=(a,b)\). Bài toán trở thành:
Tìm min, max (nếu có) của hàm số $y=a^5+b^5$ biết $a+b=1$ và $a,b\in [0;1]$
---------------------------------
Áp dụng BĐT Cô-si:
\(a^5+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}\geq 5\sqrt[5]{a^5.\frac{1}{2^{20}}}=\frac{5a}{16}\)
\(b^5+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}\geq \frac{5b}{16}\)
Cộng theo vế:
\(\Rightarrow a^5+b^5+\frac{8}{2^5}\geq \frac{5(a+b)}{16}=\frac{5}{16}\)
\(\Rightarrow a^5+b^5\geq \frac{1}{16}\)
Vậy $y_{\min}=\frac{1}{16}$ khi $a=b=\frac{1}{2}$ hay $\sin x=\cos x=\frac{1}{\sqrt{2}}$
Lại có:
Vì $a,b\in [0;1]$ nên $a^5\leq a; b^5\leq b$
\(\Rightarrow y=a^5+b^5\leq a+b=1\)
Vậy $y_{\max}=1$ khi $(a,b)=(0,1)$ và hoán vị hay $(\sin x, \cos x)=(0,\pm 1)$ và hoán vị.