K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

Hoàng Tử Hà phải nhanh ko thì mất câu :v

Với lại mới on nên thấy câu nào mới + chưa làm là tới liền =)))

2 tháng 7 2019

\(\sqrt{4x^2}+\sqrt{x^2-6x+9}\\ =\sqrt{\left(2x\right)^2}+\sqrt{\left(x-3\right)^2}\\ =2\left|x\right|+\left|x-3\right|\\ =2x+x-3\left(vìx>3\right)\\ =3x-3=3\left(x-1\right)\)

11 tháng 7 2016

a) \(\sqrt{x^2-10x+25}+\sqrt{x^2-6x+9}=\sqrt{\left(x-5\right)^2}+\sqrt{\left(x-3\right)^2}=\left|x-5\right|+\left|x-3\right|\)

Vì x > 5 nên x - 5 > 0 , x - 3 > 0

=> \(\left|x-5\right|+\left|x-3\right|=x-5+x-3=2x-8\)

b) Điều kiện phải là \(2\le x< 3\)

 \(\sqrt{x^2-6x+9}-\sqrt{x^2-4x+4}=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x-2\right)^2}=\left|x-3\right|-\left|x-2\right|\)

Vì \(2\le x< 3\Rightarrow\hept{\begin{cases}x-2\ge0\\x-3< 0\end{cases}}\)

=> \(\left|x-3\right|-\left|x-2\right|=3-x-\left(x-2\right)=-2x+5\)

21 tháng 5 2023

a) `sqrt(x^2-6x _9) = 4-x`

`<=> sqrt[(x-3)^2] =4-x`

`<=> |x-3| =4-x ( đk :x<=4)`

`<=> |x-3| = |4-x|`

`<=> [(x-3 =4-x),(x-3 = x-4):}`

`<=>[(x = 7/2(t//m)),(0=-1(vl)):}`

Vậy `S = {7/2}`

b) `sqrt(x^2 -9) + sqrt(x^2 -6x +9) =0(đk : x>=3(hoặc) x<=-3)`

`<=>sqrt(x^2 -9) =- sqrt(x^2 -6x +9) `

`<=>(sqrt(x^2 -9))^2 =(- sqrt(x^2 -6x +9))^2`

`<=> x^2 -9 = x^2 -6x +9`

`<=> 6x = 9+9 =18`

`<=> x=3(t//m)`

Vậy `S={3}`

 

21 tháng 5 2023

c) `sqrt(x^2 -2x+1) + sqrt(x^2-4x+4) =3`

`<=> sqrt[(x-1)^2] +sqrt[(x-2)^2] =3`

`<=> |x-1| +|x-2| =3`

xét `x<1 =>{(|x-1| =1-x ),(|x-2|=2-x):}`

`=> 1-x +2-x =3`

`=> x = 0(t//m)`

xét `1<=x<2 => {(|x-1|=x-1),(|x-2|= 2-x):}`

`=> x-1 +2-x =3`

`=>1=3 (vl)`

xét `x>=2 => {(|x-1| =x-1),(|x-2|=x-2):}`

`=> x-1+x-2 =3`

`=> x=3(t//m)`

Vậy `S = {0;3}`

23 tháng 8 2021

d) \(\sqrt{x^2-6x+9}=2\Leftrightarrow\sqrt{\left(x-3\right)^2}=2\Leftrightarrow x-3=2\Leftrightarrow x=5\)

e) đk: \(x\ge2\)\(\sqrt{x^2-3x+2}=\sqrt{x-1}\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)f) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\Leftrightarrow2x-1=x-3\Leftrightarrow x=-2\)

c: Ta có: \(\sqrt{x+4\sqrt{x-4}}=2\)

\(\Leftrightarrow\left|\sqrt{x-4}+2\right|=2\)

\(\Leftrightarrow x-4=0\)

hay x=4

9 tháng 7 2019

a) \(4x-\sqrt{x^2-4x+4}=4x-\sqrt{\left(x-2\right)^2}=4x-\left(x-2\right)=3x+2\)

b) \(3x+\sqrt{9+6x+x^2}=3x+\sqrt{\left(x+3\right)^2}=3x-\left(x+3\right)=2x-3\)

c) \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)

d) \(\frac{\sqrt{x^2+4x+4}}{x+2}=\frac{\sqrt{\left(x+2\right)^2}}{x+2}=\frac{\left|x+2\right|}{x+2}\)( 1 )

với x < -2 thì : \(\left(1\right)\Leftrightarrow\frac{-\left(x+2\right)}{x+2}=-1\)

với x > -2 thì : \(\left(1\right)\Leftrightarrow\frac{\left(x+2\right)}{x+2}=1\)

6 tháng 9 2016

a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)

Đặt \(x-3=t\) pt thành

\(\sqrt{t\left(t-6\right)}-t=0\)

\(\Leftrightarrow t^2-6t=t^2\)

\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)

 

6 tháng 9 2016

b)\(\sqrt{x^2-4}-x^2+4=0\)

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

Đặt \(\sqrt{x^2-4}=t\) pt thành

\(t=t^2\Rightarrow t\left(1-t\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).

Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\) 

Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)

 

 

 

 

 

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

15 tháng 7 2017

Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.

b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)

Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)

Dấu = xảy ra khi \(x=2\)

c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)

\(\le1+\sqrt{3}\)

Dấu = không xảy ra nên pt vô nghiệm

Câu d làm tương tự

15 tháng 7 2017

\(a,\sqrt{x^2-4}-x^2+4=0\) 

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\) 

\(\Leftrightarrow x^2-4=\left(x-4\right)^2\) 

\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)  

\(\Leftrightarrow-x^4-7x^2-20=0\) 

\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\) 

\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\) 

\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\) 

\(\Rightarrow\)pt vô nghiệm

28 tháng 10 2021

h: \(\sqrt{18x}+\sqrt{32x}-14=0\)

\(\Leftrightarrow7\sqrt{2x}=14\)

hay x=2