Tìm a,b \(\in Q\)
Biết a-b=2.(a+b)=a.b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(ƯCLN\left(a,b\right)=32\)nên \(a=32m,b=32n\)
Trong đó \(\left(m,n\right)=1\)
Khi đó \(a.b=32m.32n=1024m.n\)
\(\Rightarrow\)\(6144=1024.m.n\)
\(\Rightarrow\)\(m.n=6\)
Lại có: \(\left(m,n\right)=1\)nên ta có 4 trường hợp sau:
\(m=1;n=6\Rightarrow a=21;b=192\)
\(m=6;n=1\Rightarrow a=192;b=32\)
\(m=2;n=3\Rightarrow a=64;b=96\)
\(m=3;n=2\Rightarrow a=96;b=64\)
\(2a^2-3ab+b^2=0\)
\(\Leftrightarrow\left(2a^2-2ab\right)-\left(ab-b^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\2a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\2a=b\end{cases}}}\)
Rồi thay vào mà tính
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
\(a-b=2\left(a+b\right)\\ \Leftrightarrow a-b=2a+2b\\ \Leftrightarrow a=-3b\\ a-b=ab\Leftrightarrow-4b=-3b^2\Leftrightarrow3b^2-4b=0\\ \Leftrightarrow\left[{}\begin{matrix}b=\dfrac{4}{3}\\b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-4\\b=0\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left\{\left(0;0\right);\left(-4;\dfrac{4}{3}\right)\right\}\)
\(a-b=2\left(a+b\right)\)
\(\Rightarrow a-b=2a+2b\)
\(\Rightarrow a=-3b\)
\(a-b=a.b\)
\(\Rightarrow-3b-b=\left(-3b\right).b\)
\(\Rightarrow-4b=-3b^2\)
\(\Rightarrow3b^2-4b=0\Rightarrow b\left(3b-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}b=0\\b=\dfrac{4}{3}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\\\left\{{}\begin{matrix}a=-4\\b=\dfrac{4}{3}\end{matrix}\right.\end{matrix}\right.\)