Tim x sao cho:
\(1+6x-6x^2-x^3=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+6x-6x^2-x^3=0\)
\(\Leftrightarrow-x^3-6x^2+6x+1=0\)
\(\Leftrightarrow-x^3+x^2-7x^2+7x-x+1=0\)
\(\Leftrightarrow-x^2\left(x-1\right)-7x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-x^2-7x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-x^2-7x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+7x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+7x+12,25-11,25=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+3,5\right)^2-\left(\frac{3\sqrt{5}}{2}\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+3,5-\frac{3\sqrt{5}}{2}\right)\left(x+3,5+\frac{3\sqrt{5}}{2}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x+3,5-\frac{3\sqrt{5}}{2}=0\\x+3,5+\frac{3\sqrt{5}}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3,5+\frac{3\sqrt{5}}{2}=\frac{-7+3\sqrt{5}}{2}\\x=-3,5-\frac{3\sqrt{5}}{2}=\frac{-7-3\sqrt{5}}{2}\end{matrix}\right.\)
Vậy x = \(\left\{1;\frac{-7+3\sqrt{5}}{2};\frac{-7-3\sqrt{5}}{2}\right\}\)
\(1+6x-6x^2-x^3=0\)
\(\Leftrightarrow x^3+6x^2-6x-1=0\)
\(\Leftrightarrow x^3-x^2+7x^2-7x+x-1=0\)
\(\Leftrightarrow x^2\left(x-1\right)+7x\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+7x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+7x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+\frac{7}{2}\right)^2-\frac{45}{4}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+\frac{7}{2}\right)^2=\left(\frac{\pm\sqrt{45}}{2}\right)^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{\pm\sqrt{45}-7}{2}\end{matrix}\right.\)
2x4 - 6x3 + x2 + 6x - 3 = 0
=> 2x4 - 2x3 - 4x3 + 4x2 - 3x2 + 3x + 3x - 3 = 0
=> 2x3(x - 1) - 4x2(x - 1) - 3x(x - 1) + 3(x - 1) = 0
=> (x - 1)(2x3 - 4x2 - 3x + 3) = 0
=> (x - 1)(2x3 + 2x2 - 6x2 - 6x + 3x + 3) = 0
=> (x - 1)[2x2(x + 1) - 6x(x + 1) + 3(x + 1)] = 0
=> (x - 1)(x + 1)(2x2 - 6x + 3) = 0
\(\Rightarrow\left[{}\begin{matrix}x-1\\x+1\\2x^2-6x+3\end{matrix}\right.\) (2x2 - 6x + 3 vô nghiệm)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Tim x,
a,2x^4-6x^3+x^2+6x-3=0
b,x^3-9x^2+26x+24=0
c, P= 2x^4 - 4x^3 + 6x^2 - 4x + 5 biet rang x^2 - x=7
a)\(2x^4-6x^3+x^2+6x-3=0\)
\(\Leftrightarrow2x^4-6x^3+3x^2-2x^2+6x-3=0\)
\(\Leftrightarrow x^2\left(2x^2-6x+3\right)-\left(2x^2-6x+3\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(2x^2-6x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(2x^2-6x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+1=0\\2x^2-6x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\\\Delta_{2x^2-6x+3}=\left(-6\right)^2-4\left(2.3\right)=12\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\\x_{1,2}=\frac{6\pm\sqrt{12}}{4}\end{array}\right.\)
b)\(x^3+9x^2+26x+24=0\)
\(\Leftrightarrow x^3+5x^2+6x+4x^2+20x+24=0\)
\(\Leftrightarrow x\left(x^2+5x+6\right)+4\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow\left(x^2+5x+6\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\\x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=-3\\x=-4\end{array}\right.\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+1}-\left(2x+1\right)+\left(2x+1\right)-\sqrt[3]{1+6x}}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{-4x^2}{\sqrt{4x+1}+2x+1}+\dfrac{x^2\left(8x+12\right)}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{-4}{\sqrt{4x+1}+2x+1}+\dfrac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}\right)\)
\(=\dfrac{-4}{2}+\dfrac{12}{3}=...\)
d) (x - 2)^2 = 1
= x = 2 + 1 = 3
c) (x^2 + 1). (x + 2011) = 0
Tim x:
a) x^2 + 2x = 0
= \(x^2+2x=0\)
= \(x^2=0:2=0\)
b) (x - 3) + 2x^2 - 6x = 0
Rút gọn thừa số chung :
\(2x^2-5x-3=0\)
x = \(\frac{-1}{2}\)x = 3
=\(x^2=0\)
=> x = 0
\(1+6x-6x^2-x^3=0\)
\(\Leftrightarrow x^2+7x+1-x^3-7x^2-x=0\)
\(\Leftrightarrow\left(x^2+7x+1\right)-x\left(x^2+7x+1\right)=0\)
\(\Leftrightarrow\left(x^2+7x+1\right)\left(1-x\right)=0\)
\(\Leftrightarrow\left[\left(x^2+7x+\frac{49}{4}\right)-\frac{45}{4}\right]\left(1-x\right)=0\)
\(\Leftrightarrow\left[\left(x+\frac{7}{2}\right)^2-\frac{45}{4}\right]\left(1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{45}-7}{2}\\x=-\frac{\sqrt{45}+7}{2}\\x=1\end{matrix}\right.\)