Cho \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\)
Tìm GTNN của A=xy
B=x+y
Ai làm nhanh đúng mk t nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x,y\ne0\)
Áp dụng BĐT Bunhiacopxki:
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)
Dấu "=" xảy ra khi x=y.
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^2\le\frac{\frac{1}{2}}{\frac{1}{2}}=1\)\(\Rightarrow-1\le\frac{1}{x}+\frac{1}{y}\le1\)
\(\Leftrightarrow\frac{x+y}{xy}\ge-1\)
\(\Leftrightarrow\frac{x+y+xy}{xy}\ge0\)
*Với xy>0:
\(\Leftrightarrow x+y\ge-xy\)
*Với xy<0:
\(\Leftrightarrow x+y\le-xy\)
Có: \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\)\(\Rightarrow\frac{2}{x^2}=\frac{1}{2}\Leftrightarrow x=y=2\)
\(\Rightarrow x+y\ge-xy=-4\)
\(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^2-\frac{2}{xy}=\frac{1}{2}\)\(\le1-\frac{2}{xy}\)
\(\Leftrightarrow\frac{1}{xy}\le\frac{1}{4}\Leftrightarrow xy\ge4\)
Vậy Amin=-4 khi x=y=2.
Bmin=4 khi x=y=2.
Nếu bài toán ko cho thêm điều kiện x; y dương thì GTNN của cả A lẫn B đều không tồn tại
a, \(P=\left(x^4-8x^3+16x^2\right)+12x^2-48x+35\)
\(=\left(x^2-4x\right)^2+12\left(x^2-4x\right)+36-1\)
\(=\left(x^2-4x+6\right)^2-1\)
\(=\left[\left(x-2\right)^2+2\right]^2-1\)
\(\ge2^2-1=3\)
Cách khác \(P=\left(x-2\right)^2\left[\left(x-2\right)^2+4\right]+3\ge3\)
Đẳng thức xảy ra khi \(x=2.\)
b, \(xy\le\frac{\left(x+y\right)^2}{4}=9\)
Áp dụng bđt Co6si: \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
\(Q\ge\frac{102}{xy}+xy=xy+\frac{81}{xy}+\frac{21}{xy}\ge2\sqrt{xy.\frac{81}{xy}}+\frac{21}{9}=\frac{61}{3}.\)
Dấu bằng xảy ra khi \(x=y=3.\)
\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:
\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x = y = z = 1/3
Vậy A min = 3/4 khi x=y=z=1/3
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
áp dùng BDT cô si chúa Pain có
\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\Rightarrow xy\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge2.\)
mà \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\)
\(\Rightarrow\frac{xy}{2}\ge\Rightarrow xy\ge4\)
b)
áp dụng BDT cô si ta có
\(x+y\ge2\sqrt{xy}\)
lấy từ câu A ta có \(xy\ge4\) " câu a"
suy ra
\(x+y\ge2\sqrt{4}=4\)
Bài 1:a,
A=a/b+c + b/a+c + c/a+b = a^2/ab+ac + b^2/ab+bc + c^2/ac+bc
Áp dụng BĐT dạng Angel : A > hoặc = (a+b+c)^2/ab+ac+ab+bc+ac+bc=(a+b+c)^2/2(ab+bc+ca) > hoặc = 3(ab+bc+ca)/2(ab+bc+ca)=3/2
b,làm tt câu a
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz)
\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)
a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky)
\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)
\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)
Dấu "=" xảy ra <=> x = y = z = 2/3
ÁP DỤNG BĐT CAUCHY TA CÓ
\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\)
\(\Rightarrow\frac{1}{2}\ge\frac{2}{xy}\Leftrightarrow\frac{2}{4}\ge\frac{2}{xy}\)
\(\Rightarrow xy\ge4\)
s ngắn z