Giải phương trình: \(\frac{x}{x^2+x+1}+\frac{2x}{x^2+2x+1}=\frac{8}{15}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x>0\)
Ta có:
\(-\sqrt{x}-2\left(x-\frac{1}{x}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)
\(\Leftrightarrow-\sqrt{x}+\frac{1}{2x\sqrt{x}}=\frac{1}{2x^3}+2x-\frac{2}{x}\)
\(\frac{\Leftrightarrow1}{2x\sqrt{x}}-\sqrt{x}=2\left(x-\frac{1}{x}+\frac{1}{4x^3}\right)\)
Đặt : \(\frac{1}{2x\sqrt{x}}-\sqrt{x}=a\Rightarrow a^2=x-\frac{1}{x}+\frac{1}{4x^3}\)
Khi đó pt đã cho trở thành:
\(a=2a^2\Leftrightarrow\orbr{\begin{cases}a=0\\a=\frac{1}{2}\end{cases}}\)
+) a = 0\(\Rightarrow x=\frac{1}{\sqrt{2}}\)
Tương tự
ĐKXĐ: ...
\(\Leftrightarrow\frac{9\left(2x+5\right)^2}{4\left(x+4\right)^2}+\left(2x+5\right)^2=8\)
\(\Leftrightarrow\frac{9\left(2x+5\right)^2}{4\left(x+4\right)^2}-2.\frac{3\left(2x+5\right)}{2\left(x+4\right)}.\left(2x+5\right)+\left(2x+5\right)^2+\frac{3\left(2x+5\right)^2}{x+4}=8\)
\(\Leftrightarrow\left(\left(2x+5\right)-\frac{3\left(2x+5\right)}{2\left(x+4\right)}\right)^2+\frac{3\left(2x+5\right)^2}{x+4}=8\)
\(\Leftrightarrow\left(\frac{\left(2x+5\right)^2}{2\left(x+4\right)}\right)^2+\frac{3\left(2x+5\right)^2}{x+4}-8=0\)
Đặt \(\frac{\left(2x+5\right)^2}{x+4}=a\)
\(\Leftrightarrow\frac{a^2}{4}+3a-8=0\)
Nghiệm xấu, bạn tự giải nốt
Đặt \(\sqrt{x}=t\left(t>0\right)\)
\(\Leftrightarrow\frac{1}{1+t^2}+\frac{2}{1+t}=\frac{2+t}{2t^2}\)
\(\Leftrightarrow\frac{1+t+2t+2t^2}{\left(1+t\right)\left(1+t^2\right)}=\frac{2+t}{2t^2}\)
\(\Leftrightarrow\frac{2t^2+3t+1}{\left(1+t\right)\left(1+t^2\right)}=\frac{2+t}{2t^2}\)
\(\Leftrightarrow\frac{\left(t+1\right)\left(2t+1\right)}{\left(1+t\right)\left(1+t^2\right)}=\frac{2+t}{2t^2}\)
\(\Leftrightarrow\frac{2t+1}{1+t^2}=\frac{2+t}{2t^2}\)
\(\Leftrightarrow2t^2\left(2t+1\right)=\left(2-t\right)\left(1+t^2\right)\)
\(\Leftrightarrow4t^3+2t^2=2+2t^2+1+t^3\)
\(\Leftrightarrow t=1\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)
\(x=0\) không phải nghiệm, pt tương đương:
\(\frac{12}{x+4+\frac{2}{x}}-\frac{3}{x+2+\frac{2}{x}}=1\)
Đặt \(x+2+\frac{2}{x}=a\)
\(\frac{12}{a+2}-\frac{3}{a}=1\Leftrightarrow12a-3\left(a+2\right)=a\left(a+2\right)\)
\(\Leftrightarrow a^2-7a+6=0\Rightarrow\left[{}\begin{matrix}a=1\\a=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+2+\frac{2}{x}=1\\x+2+\frac{2}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x+2=0\\x^2-4x+2=0\end{matrix}\right.\)
Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:
\(\frac{1}{x+1+\frac{1}{x}}+\frac{2}{x+2+\frac{1}{x}}=\frac{8}{15}\)
Đặt \(x+1+\frac{1}{x}=a\)
\(\frac{1}{a}+\frac{2}{a+1}=\frac{8}{15}\)
\(\Leftrightarrow a+1+2a=\frac{8}{15}a\left(a+1\right)\)
\(\Leftrightarrow8a^2-37a-15=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-\frac{3}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1+\frac{1}{x}=5\\x+1+\frac{1}{x}=-\frac{3}{8}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+1=0\\x^2+\frac{11}{8}x+1=0\end{matrix}\right.\)