Tìm x :
\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{\frac{2x-3}{x-1}}=2\RightarrowĐk:\frac{2x-3}{x-1}\ge0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge\frac{3}{2}\\x< 1\end{array}\right.\)
\(\sqrt{\frac{2x-3}{x-1}}=2\Rightarrow\frac{2x-3}{x-1}=4\)
\(\Leftrightarrow2x-3=4\left(x-1\right)\Leftrightarrow2x-3=4x-4\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)(nhận)
b)\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\RightarrowĐk:\begin{cases}2x-3\ge0\\x-1>0\end{cases}\)
\(\Leftrightarrow x\ge\frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow\sqrt{2x-3}=2\sqrt{x-1}\)
\(\Leftrightarrow2x-3=4x-4\)\(\Leftrightarrow x=\frac{1}{2}\)(loại)
c)\(\sqrt{\frac{4x+3}{x+1}}=3\RightarrowĐk:\frac{4x+3}{x+1}\ge0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge\frac{-3}{4}\\x< -1\end{array}\right.\)
\(\sqrt{\frac{4x+3}{x+1}}=3\Rightarrow\frac{4x+3}{x+1}=9\)
\(\Leftrightarrow4x+3=9\left(x+1\right)\Leftrightarrow4x+3=9x+9\)
\(\Leftrightarrow5x=-6\Leftrightarrow x=\frac{-6}{5}\)(nhận)
c)\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\RightarrowĐk:\begin{cases}4x+3\ge0\\x+1>0\end{cases}\)
\(\Rightarrow x\ge\frac{-3}{4}\)
\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\Rightarrow\sqrt{4x+3}=3\sqrt{x+1}\)
\(\Leftrightarrow4x+3=9\left(x+1\right)\Leftrightarrow4x+3=9x+9\)
\(\Leftrightarrow x=\frac{-6}{5}\)(loại)
1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy x=2 hoặc x=-1
ĐKXĐ: \(x\ge\frac{3}{4}\)
\(\sqrt{4x-3}-\sqrt{2x-1}+\sqrt{\frac{x+3}{2x-1}}-\sqrt{\frac{x+3}{4x-3}}\ge0\)
\(\Rightarrow\sqrt{4x-3}-\sqrt{2x-1}+\sqrt{x+3}\left(\frac{\sqrt{4x-3}-\sqrt{2x-1}}{\sqrt{4x-3}.\sqrt{2x-1}}\right)\ge0\)
\(\Rightarrow\left(\sqrt{4x-3}-\sqrt{2x-1}\right)\left(1+\frac{\sqrt{x+3}}{\sqrt{4x-3}\sqrt{2x-1}}\right)\ge0\)
\(\Rightarrow\sqrt{4x-3}-\sqrt{2x-1}\ge0\) (do \(1+\frac{\sqrt{x+3}}{\sqrt{4x-3}\sqrt{2x-1}}>0\))
\(\Rightarrow\sqrt{4x-3}\ge\sqrt{2x-1}\)
\(\Rightarrow4x-3\ge2x-1\)
\(\Rightarrow x\ge1\)
\(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a/ \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt[]{x-3}\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt[]{x-3}}\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-3}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
=> \(R=\frac{3\sqrt{x}-3}{\sqrt{x}-3}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
b/ Để R<-1 => \(\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< -1\)
<=> \(3\sqrt{x}-3< -\sqrt{x}-1\)
<=> \(4\sqrt{x}< 2\)=> \(\sqrt{x}< \frac{1}{2}\) => \(-\frac{1}{4}< x< \frac{1}{4}\)
Chỗ => R = \(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\) là sao vậy ạ?
Bài 2:Áp dụng BĐT AM-GM ta có:
\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)
\(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}\)
\(\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}\)
CỘng theo vế 3 BĐT trên có:
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)
Khi x=y=z
Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
\(..........................\)
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
Cộng theo vế ta có:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\)
\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\)\(\Rightarrow\frac{|4x+3|}{|x+1|}=3\)
\(\Rightarrow|4x+3|=3|x+1|\)
TH1 : \(4x+3=-3\left(x+1\right)\)
\(\Rightarrow4x+3=-3x-3\)
\(\Rightarrow7x=-6\Leftrightarrow x=-\frac{6}{7}\)
Th2 : \(4x+3=3\left(x+1\right)\)
\(\Rightarrow4x+3=3x+3\)
\(\Rightarrow x=0\)
Vậy \(x\in\left\{0;-\frac{6}{7}\right\}\)
\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\Rightarrow\frac{|4x+3|}{|x+1|}=9\)
\(\Rightarrow|4x+3|=9|x+1|\)
\(TH1:|4x+3|=-9|x+1|\)
\(\Rightarrow4x+3=-9x-9\Rightarrow13x=-12\Rightarrow x=-\frac{12}{13}\)
\(TH2:|4x+3|=9|x+1|\)
\(\Rightarrow4x+3=9x+9\)
\(\Rightarrow5x=-6\Rightarrow x=\frac{-6}{5}\)