Bài 1 : So sánh phân số sau với 1
a) 1999 x 1999 / 1995 x 1995
Bài 2 : Tính nhanh
a) 2/3 + 2/6 + 2/12 + 2/24 + 2/48 + 2/96 + 2/192
b)1/2 + 1/4 +1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
Làm giúp mình ! Chúc các bạn thành công !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = \(\frac{127}{96}\)
b) = \(\frac{255}{256}\)
c) Mik bỏ nha
d) = \(\frac{1023}{512}\)
e) = \(\frac{2343}{625}\)
1 a) (x+ 1) + (x + 2 ) + (x + 3) + ... + (x + 100) = 205550 (100 cặp)
=> (x + x + ... + x) + (1 + 2 + 3 + ... + 100) = 205 550
100 số hạng x 100 số hạng
=> 100.x + 100 . 101 : 2 = 205 550
=> 100.x + 5050 = 205 550
=> 100 . x = 205 550 - 5050
=> 100 . x = 200500
=> x = 200500 : 100
=> x = 2005
a, 2006 x 2004 - \(\frac{2}{1995}\) + 2004 x 2005 = 8038043,999
b, 2006 x 125 + \(\frac{1000}{126}\) x 2006 - 1006 = 265664,6349
c, A = 1991 x 1999
=> A = ( 1995 - 4 ) x ( 1995 + 4 )
A = 1995 x ( 1995 + 4 ) - 4 x ( 1995 + 4 )
A = 1995 x 1995 + 1995 x 4 - ( 4 x 1995 + 4 x 4 )
A = 1995 x 1995 - 4 x 4
mà B = 1995 x 1995
Vậy A < B
d, Gọi giá trị biểu thức là C
C = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
C x 2 = \(\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}\)
C x 2 = \(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}\)
Vậy C x 2 - C = \(\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)\)
C = \(\frac{2}{3}-\frac{1}{96}\) ( vì phân số nào có ở số bị trừ cũng có ở số trừ thì trừ hết rồi nên không còn )
C = \(\frac{21}{32}\)
A=1991x1999=(1995-4)1999=1995x1999-4x1999
B=1995x1995=1995x(1999-4)=1995x1999-1995x4>1995x1999-4x1999=A
vậy A<B
A=1991x1999=
(1995-4)1999
=1995x1999-4x1999
B=1995x1995
=1995x(1999-4)
=1995x1999-1995x4>1995x1999-4x1999=A
vậy A<B
a, \(1-6+11-16+21-26+...+91-96+101\)\
\(\left(1+11+21+...+91+101\right)^{\left(1\right)}-\left(6+16+26+...+96\right)^{\left(2\right)}\)
Ta gọi (1) là B
(2) là A
Tổng dãy B là: ( 91 - 1) : 10 + 1 : 2 . ( 91 +1 ) + 101 = 561
Tổng dãy A là: ( 96 - 6) : 10 + 1 : 2 . ( 96 + 6 ) = 510
1 - 6 + 11 - 16 + 21 - 26 + ......... + 91 - 96 + 101 = 561 - 510
= 51
b, A = 1991 . 1999 = 1991 . ( 1995 + 4 ) = 1991 . 1995 + 1991 . 4
B = 1995 . 1995 = 1995 . ( 1991 + 4 ) = 1995 . 1991 + 1995 . 4
1991 < 1995 => A < B
a)\(A=\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}+\frac{2}{192}\)
\(\frac{1}{2}xA=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(\frac{1}{4}xA=\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}\)
\(\frac{1}{4}xA-\frac{1}{2}xA=\frac{1}{3}-\frac{1}{384}\)
\(\frac{1}{4}xA=\frac{127}{384}\)
\(A=\frac{127}{384}:\frac{1}{4}\)
\(A=\frac{127}{96}\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
1. 2006/987654321 + 2007/246813579 = 2007/246813579 + 2006/987654321
=>
2.
3 - (5.3/8 + X - 7 . 5/24) : 6 . 2/3 =2
3 - (15/8 + X - 35/24) : 4 = 2
3 - (15/8 + X - 35/24) = 2 . 4
3 - (15/8 + X - 35/24) = 8
15/8 + X - 35/24 = 3 - 8
15/8 + X - 35/24 = -5
15/8 + X = -5 + 35/24
15/8 + X = -85/24
X = -85/24 - 15/8
X = -65/12
a: \(A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^7\)
=>\(2\cdot A=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^6\)
=>\(2A-A=1-\left(\dfrac{1}{2}\right)^7=1-\dfrac{1}{128}=\dfrac{127}{128}\)
=>\(A=\dfrac{127}{128}\)
b: \(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{10\cdot11}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=1-\dfrac{1}{11}=\dfrac{10}{11}\)
\(\frac{1999x1999}{1995x1995_{ }}=\frac{1999^2}{1995^2}=\left(\frac{1999}{1995}\right)^2\)\(>1^2\)\(=1\)
Bài 2 bấm máy tính nhé !