Tìm giá trị nhỏ nhất của các biểu thức:
\(A=5x^2+13y^2+8xy-8x-12y+4\)
\(B=\frac{x^2+1}{x^2-x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : C = (x + 1).(x + 2).(x + 3).(x + 4)
=> C = [(x + 1).(x + 4)].[(x + 2).(x + 3)]
=> C = [x2 + 5x + 4] . [x2 + 5x + 6]
Đặt t = x2 + 5x + 5
Khi đó t - 1 = x2 + 5x + 4 , t + 1 = x2 + 5x + 6
Nên C = (t - 1)(t + 1) = t2 - 1 = (x2 + 5x + 5)2 - 1
Mà (x2 + 5x + 5)2 \(\ge0\forall x\)
Do đó (x2 + 5x + 5)2 - 1 \(\ge-1\forall x\)
Vậy GTNN của C là :
My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé
https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N
a, ĐKXĐ: \(\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}5\left(x+5\right)\ne0\\x\ne0\\x\left(x+5\right)\ne0\end{cases}\Rightarrow}}\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b, \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)
\(=\frac{x^3}{5x\left(x+5\right)}+\frac{5\left(2x-10\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{\left(50+5x\right).5}{5x\left(x+5\right)}\)
\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)
c, \(P=-4\Rightarrow\frac{x+5}{5}=-4\Rightarrow x+5=-20\Rightarrow x=-25\)
d, \(\frac{1}{P}\in Z\Rightarrow\frac{5}{x+5}\in Z\Rightarrow5⋮\left(x+5\right)\Rightarrow x+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Rightarrow x\in\left\{-10;-6;-4;0\right\}\)
Mà x khác 0 (ĐKXĐ của P) nên \(x\in\left\{-10;-6;-4\right\}\)
a) \(ĐKXĐ:\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b) \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)
\(P=\frac{x^3}{5x\left(x+5\right)}+\frac{10x^2-250}{5x\left(x+5\right)}+\frac{250+25x}{5x\left(x+5\right)}\)
\(P=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)
c) \(P=4\Leftrightarrow\frac{x+5}{5}=4\Leftrightarrow x+5=20\Leftrightarrow x=15\)
d) \(\frac{1}{P}=\frac{5}{x+5}\in Z\Leftrightarrow5⋮x+5\)
\(\Leftrightarrow x+5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng nhé
e) \(Q=P+\frac{x+25}{x+5}=\frac{x+30}{x+5}=1+\frac{25}{x+5}\)
\(Q_{min}\Leftrightarrow\frac{25}{x+5}_{min}\)
\(B=x^2-8x-17\)
\(=\left(x^2-8x+16\right)-33\)
\(=\left(x-4\right)^2-33\ge-33\)
vậy min B=-33 khi x=4
\(C=x^2+5x+1\)
\(=\left(x^2+5x+\frac{25}{4}\right)-\frac{21}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
vậy min C = -21/4 khi x= -5/2
Ta có : \(B=x^2+8x-17\)
\(\Rightarrow B=x^2+8x+16-33\)
\(\Rightarrow B=\left(x+4\right)^2-33\)
Mà ; \(\left(x+4\right)^2\ge0\forall x\)
Nên : \(B=\left(x+4\right)^2-33\ge-33\forall x\)
Vậy GTNN của B là -33 khi x = -4
Bài giải
\(B=\frac{x^2+1}{x^2-x+1}=\frac{x^2+1-x+x}{x^2-x+1}=\frac{x^2+1-x}{x^2-x+1}+\frac{x}{x^2-x+1}=1+\frac{x}{x^2-x+1}\)
\(B\) nhỏ nhất khi \(\frac{x}{x^2-x+1}\) nhỏ nhất
\(\Leftrightarrow\text{ }x\text{ nhỏ nhất}\text{ }\Rightarrow\text{ }x=0\)
Thay \(x=0\) ta có :
\(B=\frac{x^2+1}{x^2-x+1}=\frac{0^2+1}{0^2-0+1}=\frac{1}{1}=1\)
Vậy \(GTNN\) của \(B=1\)