4. Cho \(x^2-4x+1=0\). Tính
\(P=2\left(x^3+\frac{1}{x^3}\right)-3\left(x^2+\frac{1}{x^2}\right)+4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Leftrightarrow\left(x+2\right)^2-3\left|x+2\right|=0\)
\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x+2\right|=0\\\left|x+2\right|=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x+2=3\\x+2=-3\end{matrix}\right.\)
b/
\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|-4=0\)
\(\Leftrightarrow\left(\left|x+2\right|+1\right)\left(\left|x+2\right|-4\right)=0\)
\(\Leftrightarrow\left|x+2\right|-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\)
c/
\(\Leftrightarrow\left|x^2-3\right|^2-6\left|x^2-3\right|+5=0\)
\(\Leftrightarrow\left(\left|x^2-3\right|-1\right)\left(\left|x^2-3\right|-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x^2-3\right|=1\\\left|x^2-3\right|=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3=1\\x^2-3=-1\\x^2-3=5\\x^2-3=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=4\\x^2=2\\x^2=8\\x^2=-2\left(l\right)\end{matrix}\right.\)
d/ ĐKXĐ: ...
\(\Leftrightarrow\frac{\left|x-2\right|^2}{\left(x-1\right)^2}+\frac{2\left|x-4\right|}{x-1}=3\)
Đặt \(\frac{\left|x-2\right|}{x-1}=a\)
\(a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\\\left|x-2\right|=-3\left(x-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\left(x\ge1\right)\\\left|x-2\right|=3-3x\left(x\le1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x-1\left(vn\right)\\x-2=1-x\\x-2=3-3x\\x-2=3x-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{4}{5}\\x=\frac{1}{2}\end{matrix}\right.\)
e/ ĐKXĐ: ...
Đặt \(\left|\frac{2x-1}{x+2}\right|=a>0\)
\(a-\frac{2}{a}=1\Leftrightarrow a^2-a-2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\) \(\Rightarrow\left|\frac{2x-1}{x+2}\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=2\left(x+2\right)\\2x-1=-2\left(x+2\right)\end{matrix}\right.\)
Ta có: \(x^2-4x+1=0\) (1)
Nếu x=0 thay vào phương trình (1) thấy 1=0 vô lí
=> x khác 0
Chia cả hai vế phương trình 1 cho x ta được phương trình:
\(x-4+\frac{1}{x}=0\Leftrightarrow x+\frac{1}{x}=4\)
=> \(\left(x+\frac{1}{x}\right)^2=4^2\Leftrightarrow x^2+\frac{1}{x^2}+2=16\Leftrightarrow x^2+\frac{1}{x^2}=14\)
\(\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}\right)=x^3+\frac{1}{x^3}+x+\frac{1}{x}\)
=> \(4.14=x^3+\frac{1}{x^3}+4\Rightarrow x^3+\frac{1}{x^3}=52\)
Thay vào tính đc P
a) <=>(x - 3/4)(x-3/4 +x-1/2)=0
<=>(x-3/4)(2x-5/4)=0
<=>x-3/4=0 hoặc 2x-5/4=0
<=>x=3/4 hoặc x=5/8
Vậy tập nghiệm của phương trình trên là S={3/4;5/8}
b)<=>140x/35 - 7(4x-3)/35 - 10(x+3)/35=0
<=>140x-28x+21-10x-30=0
<=>102x=9
<=>x=3/34
Vậy tập nghiệm của phương trình trên là S={3/34}
a)\(\left(\frac{1}{3}\right)^{-1}-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^4.2^3=3-1+\frac{1}{16}.8=3-1+\frac{1}{2}=\frac{5}{2}\\ \)
b)\(2^2.2^3.\left(\frac{2}{3}\right)^{-2}=2^5.\frac{9}{4}=72\)
c)\(\left(\frac{4}{3}\right)^{-2}.\left(\frac{3}{4}\right)^3:\left(\frac{-2}{3}\right)^{-3}=\left(\frac{3}{4}\right)^2.\left(\frac{3}{4}\right)^3:\left(\frac{-2}{3}\right)^{-3}=\left(\frac{3}{4}\right)^5:\left(\frac{3}{2}\right)^3=\frac{9}{128}\)
2)
\(3^{x+1}=9^x\Leftrightarrow3^x.3=9^x\Rightarrow3=9^x:3^x\Rightarrow3=3^x\Rightarrow x=1\)
\(\left(x-0,1\right)^2=6,25\Leftrightarrow\left(x-0,1\right)^2=2,5^2\Rightarrow\left(x-0,1\right)=2,5\Rightarrow x=2,5+0,1=2,6\)
\(3^{2x-1}=243\Leftrightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow2x=6\Rightarrow x=3\)
\(\left(4x-3\right)^4=\left(4x-3\right)^2\Rightarrow x=1\)